-
Notifications
You must be signed in to change notification settings - Fork 424
/
run.sh
executable file
·125 lines (106 loc) · 3.8 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/bin/bash
# Exit on error
set -e
set -o pipefail
# Main storage directory. You'll need disk space to dump the WHAM mixtures and the wsj0 wav
# files if you start from sphere files.
storage_dir=
# If you start from the sphere files, specify the path to the directory and start from stage 0
sphere_dir= # Directory containing sphere files
# If you already have wsj0 wav files, specify the path to the directory here and start from stage 1
wsj0_wav_dir=
# If you already have the WHAM mixtures, specify the path to the directory here and start from stage 2
whamr_wav_dir=
# After running the recipe a first time, you can run it from stage 3 directly to train new models.
# Path to the python you'll use for the experiment. Defaults to the current python
# You can run ./utils/prepare_python_env.sh to create a suitable python environment, paste the output here.
python_path=python
# Example usage
# ./run.sh --stage 3 --tag my_tag --task sep_noisy --id 0,1
# General
stage=0 # Controls from which stage to start
tag="" # Controls the directory name associated to the experiment
# You can ask for several GPUs using id (passed to CUDA_VISIBLE_DEVICES)
id=$CUDA_VISIBLE_DEVICES
# Data
task=sep_clean # Specify the task here (sep_clean, sep_noisy, sep_reverb, sep_reverb_noisy)
sample_rate=8000
mode=min
nondefault_src= # If you want to train a network with 3 output streams for example.
data_dir=data # Local data directory (No disk space needed)
# Training
batch_size=32
lr=0.001
epochs=200
weight_decay=0.00001
# Architecture
kernel_size=40
stride=20
n_layers=4
n_units=600
# Evaluation
eval_use_gpu=1
. utils/parse_options.sh
sr_string=$(($sample_rate/1000))
suffix=wav${sr_string}k/$mode
dumpdir=data/$suffix # directory to put generated json file
train_dir=$dumpdir/tr
valid_dir=$dumpdir/cv
test_dir=$dumpdir/tt
if [[ $stage -le 0 ]]; then
echo "Stage 0: Converting sphere files to wav files"
. local/convert_sphere2wav.sh --sphere_dir $sphere_dir --wav_dir $wsj0_wav_dir
fi
if [[ $stage -le 1 ]]; then
echo "Stage 1: Generating 8k and 16k WHAMR dataset"
. local/prepare_data.sh --wav_dir $wsj0_wav_dir --out_dir $whamr_wav_dir --python_path $python_path
fi
if [[ $stage -le 2 ]]; then
# Make json directories with min/max modes and sampling rates
echo "Stage 2: Generating json files including wav path and duration"
for sr_string in 8 16; do
for mode_option in min max; do
tmp_dumpdir=data/wav${sr_string}k/$mode_option
echo "Generating json files in $tmp_dumpdir"
[[ ! -d $tmp_dumpdir ]] && mkdir -p $tmp_dumpdir
local_wham_dir=$whamr_wav_dir/wav${sr_string}k/$mode_option/
$python_path local/preprocess_whamr.py --in_dir $local_wham_dir --out_dir $tmp_dumpdir
done
done
fi
# Generate a random ID for the run if no tag is specified
uuid=$($python_path -c 'import uuid, sys; print(str(uuid.uuid4())[:8])')
if [[ -z ${tag} ]]; then
tag=${task}_${sr_string}k${mode}_${uuid}
fi
expdir=exp/train_tasnet_${tag}
mkdir -p $expdir && echo $uuid >> $expdir/run_uuid.txt
echo "Results from the following experiment will be stored in $expdir"
if [[ $stage -le 3 ]]; then
echo "Stage 3: Training"
mkdir -p logs
CUDA_VISIBLE_DEVICES=$id $python_path train.py \
--train_dir $train_dir \
--valid_dir $valid_dir \
--task $task \
--sample_rate $sample_rate \
--lr $lr \
--weight_decay $weight_decay \
--epochs $epochs \
--batch_size $batch_size \
--kernel_size $kernel_size \
--stride $stride \
--n_layers $n_layers \
--n_units $n_units \
--exp_dir ${expdir}/ | tee logs/train_${tag}.log
cp logs/train_${tag}.log $expdir/train.log
fi
if [[ $stage -le 4 ]]; then
echo "Stage 4 : Evaluation"
CUDA_VISIBLE_DEVICES=$id $python_path eval.py \
--task $task \
--test_dir $test_dir \
--use_gpu $eval_use_gpu \
--exp_dir ${expdir} | tee logs/eval_${tag}.log
cp logs/eval_${tag}.log $expdir/eval.log
fi