Skip to content

Latest commit

 

History

History
193 lines (144 loc) · 5 KB

README.md

File metadata and controls

193 lines (144 loc) · 5 KB

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

This repository contains the code used for the paper Understanding and mitigating exploding inverses in invertible neural networks.

This code is based on jhjacobsen/fully-invertible-revnet, y0ast/Glow-PyTorch, plucas14/pytorch-glow, and rtqichen/residual-flows.

Requirements

  • Python 3.7.x
  • PyTorch 1.1.0

Setup

First, create a conda environment with the necessary packages:

conda create -n inn-env python=3.7
source activate inn-env
conda install pytorch=1.1.0 cuda80 -c pytorch
conda install torchvision -c pytorch
pip install -r requirements.txt

Experiments

Out-of-Distribution Evaluation for Pre-Trained Models

The following commands should be run from inside the ood-pretrained folder.

First, download the OOD datasets:

./download_ood_data.sh

Evaluate Pre-Trained Glow on OOD Data

Download the pre-trained Glow model used in the y0ast/Glow-PyTorch repository:

./download_pretrained_glow.sh

Then, run the OOD evaluation:

python glow_ood_eval.py

Evaluate a Pre-Trained Residual Flow on OOD Data

The following commands must be run within the ood-pretrained/residual-flow folder.

First, download the pre-trained Residal Flow model from the repository rtqichen/residual-flows:

./download_pretrained_resflow.sh

Then, run the OOD evaluation:

python resflow_ood_eval.py

Invertibility Attack

Details on how to set up and run the invertibility attack are provided in the README inside the inv-attacks-and-2D-flows folder.

Flow Training/Stability Analysis and FlowGAN

For details on how to train and analyze stability properties of flows, as well as how to train a FlowGAN, see the README inside the glow folder.

Toy 2D Regression

To train regularized and unregularized Glow models on the toy 2D regression task, run the following commands from inside the toy-2d-regression folder:

python toy_2d_regression.py
python toy_2d_regression.py --nf_coeff=1e-6

Classification

To train an INN classifier, run any of the following commands from inside the classification folder:

Training an unregularized affine model

To train an unregularized model that becomes numerically non-invertible, you can run:

Unregularized Affine Glow with 1x1 Convolutions

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=conv \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --save_dir=saves/affine_conv

Unregularized Affine Glow with Shuffle Permutations

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=shuffle \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --save_dir=saves/affine_shuffle

Training with normalizing flow (NF) regularization

Affine Glow with 1x1 Convolutions, NF coefficient 1e-5

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=conv \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --nf_coeff=1e-5 \
    --save_dir=saves/affine_conv

Affine Glow with Shuffle Permutations, NF coefficient 1e-4

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=shuffle \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --nf_coeff=1e-5 \
    --save_dir=saves/affine_shuffle

Training with memory-saving gradients using finite differences (FD) regularization

Affine Glow with 1x1 Convolutions, FD coefficient 1e-4

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=conv \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --fd_coeff=1e-4 \
    --fd_inv_coeff=1e-4 \
    --regularize_every=10 \
    --mem_saving \
    --save_dir=saves/affine_conv

Affine Glow with Shuffle Permutations, FD coefficient 1e-4

python train_inn_classifier.py \
    --coupling=affine \
    --permutation=shuffle \
    --zero_init \
    --use_prior \
    --use_actnorm \
    --no_inverse_svd \
    --fd_coeff=1e-4 \
    --fd_inv_coeff=1e-4 \
    --regularize_every=10 \
    --mem_saving \
    --save_dir=saves/affine_shuffle

Citation

If you find this repository useful, please cite:

  • Jens Behrmann*, Paul Vicol*, Kuan-Chieh Wang*, Roger Grosse, Jörn-Henrik Jacobsen. Understanding and mitigating exploding inverses in invertible neural networks, 2020.
@article{innexploding2020,
  title={Understanding and mitigating exploding inverses in invertible neural networks},
  author={Jens Behrmann and Paul Vicol and Kuan-Chieh Wang and Roger Grosse and Jörn-Henrik Jacobsen},
  journal={arXiv preprint arXiv:2006.09347},
  year={2020}
}