-
Notifications
You must be signed in to change notification settings - Fork 372
/
Copy pathscheduled_sampling_main.py
263 lines (212 loc) · 9.78 KB
/
scheduled_sampling_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2018 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Attentional Seq2seq using Scheduled sampling algorithm.
This code is basically the same as baseline_seq2seq_attn_main.py,
except using ScheduledEmbeddingTrainingHelper.
Scheduled Sampling Algorithm is described in https://arxiv.org/abs/1506.03099
"""
# pylint: disable=invalid-name, too-many-arguments, too-many-locals
from io import open
import math
import importlib
import tensorflow as tf
import texar.tf as tx
from rouge import Rouge
flags = tf.flags
flags.DEFINE_string("config_model", "configs.config_model", "The model config.")
flags.DEFINE_string("config_data", "configs.config_iwslt14",
"The dataset config.")
flags.DEFINE_float('decay_factor', 500.,
'The hyperparameter controling the speed of increasing '
'the probability of sampling from model')
flags.DEFINE_string('output_dir', '.', 'where to keep training logs')
FLAGS = flags.FLAGS
config_model = importlib.import_module(FLAGS.config_model)
config_data = importlib.import_module(FLAGS.config_data)
if not FLAGS.output_dir.endswith('/'):
FLAGS.output_dir += '/'
log_dir = FLAGS.output_dir + 'training_log_scheduled_sampling' +\
'_decayf' + str(FLAGS.decay_factor) + '/'
tx.utils.maybe_create_dir(log_dir)
def inverse_sigmoid(i):
return FLAGS.decay_factor / (
FLAGS.decay_factor + math.exp(i / FLAGS.decay_factor))
def build_model(batch, train_data, self_sampling_proba):
"""
Assembles the seq2seq model.
It is the same as build_model() in baseline_seq2seq_attn.py except
using ScheduledEmbeddingTrainingHelper.
"""
source_embedder = tx.modules.WordEmbedder(
vocab_size=train_data.source_vocab.size, hparams=config_model.embedder)
encoder = tx.modules.BidirectionalRNNEncoder(
hparams=config_model.encoder)
enc_outputs, _ = encoder(source_embedder(batch['source_text_ids']))
target_embedder = tx.modules.WordEmbedder(
vocab_size=train_data.target_vocab.size, hparams=config_model.embedder)
decoder = tx.modules.AttentionRNNDecoder(
memory=tf.concat(enc_outputs, axis=2),
memory_sequence_length=batch['source_length'],
vocab_size=train_data.target_vocab.size,
hparams=config_model.decoder)
helper = tx.modules.get_helper(
helper_type='ScheduledEmbeddingTrainingHelper',
inputs=target_embedder(batch['target_text_ids'][:, :-1]),
sequence_length=batch['target_length'] - 1,
embedding=target_embedder,
sampling_probability=self_sampling_proba)
training_outputs, _, _ = decoder(
helper=helper, initial_state=decoder.zero_state(
batch_size=tf.shape(batch['target_length'])[0], dtype=tf.float32))
train_op = tx.core.get_train_op(
tx.losses.sequence_sparse_softmax_cross_entropy(
labels=batch['target_text_ids'][:, 1:],
logits=training_outputs.logits,
sequence_length=batch['target_length'] - 1),
hparams=config_model.opt)
start_tokens = tf.ones_like(batch['target_length']) *\
train_data.target_vocab.bos_token_id
beam_search_outputs, _, _ = \
tx.modules.beam_search_decode(
decoder_or_cell=decoder,
embedding=target_embedder,
start_tokens=start_tokens,
end_token=train_data.target_vocab.eos_token_id,
beam_width=config_model.beam_width,
max_decoding_length=60)
return train_op, beam_search_outputs
def print_stdout_and_file(content, file):
print(content)
print(content, file=file)
def main():
"""Entrypoint.
"""
train_data = tx.data.PairedTextData(hparams=config_data.train)
val_data = tx.data.PairedTextData(hparams=config_data.val)
test_data = tx.data.PairedTextData(hparams=config_data.test)
data_iterator = tx.data.TrainTestDataIterator(
train=train_data, val=val_data, test=test_data)
batch = data_iterator.get_next()
self_sampling_proba = tf.placeholder(shape=[], dtype=tf.float32)
train_op, infer_outputs = \
build_model(batch, train_data, self_sampling_proba)
def _train_epoch(sess, epoch_no, total_step_counter):
data_iterator.switch_to_train_data(sess)
training_log_file = \
open(log_dir + 'training_log' + str(epoch_no) + '.txt', 'w',
encoding='utf-8')
step = 0
while True:
try:
sampling_proba_ = 1. - inverse_sigmoid(total_step_counter)
loss = sess.run(train_op, feed_dict={
self_sampling_proba: sampling_proba_})
print("step={}, loss={:.4f}, self_proba={}".format(
step, loss, sampling_proba_), file=training_log_file)
if step % config_data.observe_steps == 0:
print("step={}, loss={:.4f}, self_proba={}".format(
step, loss, sampling_proba_))
training_log_file.flush()
step += 1
total_step_counter += 1
except tf.errors.OutOfRangeError:
break
# code below this line is exactly the same as baseline_seq2seq_attn_main.py
def _eval_epoch(sess, mode, epoch_no):
if mode == 'val':
data_iterator.switch_to_val_data(sess)
else:
data_iterator.switch_to_test_data(sess)
refs, hypos = [], []
while True:
try:
fetches = [
batch['target_text'][:, 1:],
infer_outputs.predicted_ids[:, :, 0]
]
feed_dict = {
tx.global_mode(): tf.estimator.ModeKeys.EVAL
}
target_texts_ori, output_ids = \
sess.run(fetches, feed_dict=feed_dict)
target_texts = tx.utils.strip_special_tokens(
target_texts_ori.tolist(), is_token_list=True)
target_texts = tx.utils.str_join(target_texts)
output_texts = tx.utils.map_ids_to_strs(
ids=output_ids, vocab=val_data.target_vocab)
tx.utils.write_paired_text(
target_texts, output_texts,
log_dir + mode + '_results' + str(epoch_no) + '.txt',
append=True, mode='h', sep=' ||| ')
for hypo, ref in zip(output_texts, target_texts):
if config_data.eval_metric == 'bleu':
hypos.append(hypo)
refs.append([ref])
elif config_data.eval_metric == 'rouge':
hypos.append(tx.utils.compat_as_text(hypo))
refs.append(tx.utils.compat_as_text(ref))
except tf.errors.OutOfRangeError:
break
if config_data.eval_metric == 'bleu':
return tx.evals.corpus_bleu_moses(
list_of_references=refs, hypotheses=hypos)
elif config_data.eval_metric == 'rouge':
rouge = Rouge()
return rouge.get_scores(hyps=hypos, refs=refs, avg=True)
def _calc_reward(score):
"""
Return the bleu score or the sum of (Rouge-1, Rouge-2, Rouge-L).
"""
if config_data.eval_metric == 'bleu':
return score
elif config_data.eval_metric == 'rouge':
return sum([value['f'] for key, value in score.items()])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
best_val_score = -1.
total_step_counter = 1
scores_file = open(log_dir + 'scores.txt', 'w', encoding='utf-8')
for i in range(config_data.num_epochs):
_train_epoch(sess, i, total_step_counter)
val_score = _eval_epoch(sess, 'val', i)
test_score = _eval_epoch(sess, 'test', i)
best_val_score = max(best_val_score, _calc_reward(val_score))
if config_data.eval_metric == 'bleu':
print_stdout_and_file(
'val epoch={}, BLEU={:.4f}; best-ever={:.4f}'.format(
i, val_score, best_val_score), file=scores_file)
print_stdout_and_file(
'test epoch={}, BLEU={:.4f}'.format(i, test_score),
file=scores_file)
print_stdout_and_file('=' * 50, file=scores_file)
elif config_data.eval_metric == 'rouge':
print_stdout_and_file(
'valid epoch {}:'.format(i), file=scores_file)
for key, value in val_score.items():
print_stdout_and_file(
'{}: {}'.format(key, value), file=scores_file)
print_stdout_and_file('fsum: {}; best_val_fsum: {}'.format(
_calc_reward(val_score), best_val_score), file=scores_file)
print_stdout_and_file(
'test epoch {}:'.format(i), file=scores_file)
for key, value in test_score.items():
print_stdout_and_file(
'{}: {}'.format(key, value), file=scores_file)
print_stdout_and_file('=' * 110, file=scores_file)
scores_file.flush()
if __name__ == '__main__':
main()