forked from facebookresearch/neural_stpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_stpp.py
544 lines (443 loc) · 22.5 KB
/
train_stpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# Copyright (c) Facebook, Inc. and its affiliates.
import psutil
import argparse
import itertools
import datetime
import math
import numpy as np
import os
import sys
import time
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
import datasets
from iterators import EpochBatchIterator
from models import CombinedSpatiotemporalModel, JumpCNFSpatiotemporalModel, SelfAttentiveCNFSpatiotemporalModel, JumpGMMSpatiotemporalModel
from models.spatial import GaussianMixtureSpatialModel, IndependentCNF, JumpCNF, SelfAttentiveCNF
from models.spatial.cnf import TimeVariableCNF
from models.temporal import HomogeneousPoissonPointProcess, HawkesPointProcess, SelfCorrectingPointProcess, NeuralPointProcess
from models.temporal.neural import ACTFNS as TPP_ACTFNS
from models.temporal.neural import TimeVariableODE
import toy_datasets
import utils
from viz_dataset import load_data, MAPS
torch.backends.cudnn.benchmark = True
def setup(rank, world_size, port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(minutes=30))
def cleanup():
dist.destroy_process_group()
def memory_usage_psutil():
# return the memory usage in MB
process = psutil.Process(os.getpid())
mem = process.memory_info()[0] / float(2 ** 20)
return mem
def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0):
global_step = min(global_step, decay_steps)
cosine_decay = 0.5 * (1 + math.cos(math.pi * global_step / decay_steps))
decayed = (1 - alpha) * cosine_decay + alpha
return learning_rate * decayed
def learning_rate_schedule(global_step, warmup_steps, base_learning_rate, train_steps):
warmup_steps = int(round(warmup_steps))
scaled_lr = base_learning_rate
if warmup_steps:
learning_rate = global_step / warmup_steps * scaled_lr
else:
learning_rate = scaled_lr
if global_step < warmup_steps:
learning_rate = learning_rate
else:
learning_rate = cosine_decay(scaled_lr, global_step - warmup_steps, train_steps - warmup_steps)
return learning_rate
def set_learning_rate(optimizer, lr):
for i, group in enumerate(optimizer.param_groups):
group['lr'] = lr
def cast(tensor, device):
return tensor.float().to(device)
def get_t0_t1(data):
if data == "citibike":
return torch.tensor([0.0]), torch.tensor([24.0])
elif data == "covid_nj_cases":
return torch.tensor([0.0]), torch.tensor([7.0])
elif data == "earthquakes_jp":
return torch.tensor([0.0]), torch.tensor([30.0])
elif data == "pinwheel":
return torch.tensor([0.0]), torch.tensor([toy_datasets.END_TIME])
elif data == "gmm":
return torch.tensor([0.0]), torch.tensor([toy_datasets.END_TIME])
elif data == "fmri":
return torch.tensor([0.0]), torch.tensor([10.0])
else:
raise ValueError(f"Unknown dataset {data}")
def get_dim(data):
if data == "gmm":
return 1
elif data == "fmri":
return 3
else:
return 2
def validate(model, test_loader, t0, t1, device):
model.eval()
space_loglik_meter = utils.AverageMeter()
time_loglik_meter = utils.AverageMeter()
with torch.no_grad():
for batch in test_loader:
event_times, spatial_locations, input_mask = map(lambda x: cast(x, device), batch)
num_events = input_mask.sum()
space_loglik, time_loglik = model(event_times, spatial_locations, input_mask, t0, t1)
space_loglik = space_loglik.sum() / num_events
time_loglik = time_loglik.sum() / num_events
space_loglik_meter.update(space_loglik.item(), num_events)
time_loglik_meter.update(time_loglik.item(), num_events)
model.train()
return space_loglik_meter.avg, time_loglik_meter.avg
def main(rank, world_size, args, savepath):
setup(rank, world_size, args.port)
torch.manual_seed(args.seed + rank)
np.random.seed(args.seed + rank)
logger = utils.get_logger(os.path.join(savepath, "logs"))
try:
_main(rank, world_size, args, savepath, logger)
except:
import traceback
logger.error(traceback.format_exc())
raise
cleanup()
def to_numpy(x):
if torch.is_tensor(x):
return x.cpu().detach().numpy()
return [to_numpy(x_i) for x_i in x]
def _main(rank, world_size, args, savepath, logger):
if rank == 0:
logger.info(args)
logger.info(f"Saving to {savepath}")
tb_writer = SummaryWriter(os.path.join(savepath, "tb_logdir"))
device = torch.device(f'cuda:{rank:d}' if torch.cuda.is_available() else 'cpu')
if rank == 0:
if device.type == 'cuda':
logger.info('Found {} CUDA devices.'.format(torch.cuda.device_count()))
for i in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(i)
logger.info('{} \t Memory: {:.2f}GB'.format(props.name, props.total_memory / (1024**3)))
else:
logger.info('WARNING: Using device {}'.format(device))
t0, t1 = map(lambda x: cast(x, device), get_t0_t1(args.data))
train_set = load_data(args.data, split="train")
val_set = load_data(args.data, split="val")
test_set = load_data(args.data, split="test")
train_epoch_iter = EpochBatchIterator(
dataset=train_set,
collate_fn=datasets.spatiotemporal_events_collate_fn,
batch_sampler=train_set.batch_by_size(args.max_events),
seed=args.seed + rank,
)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.test_bsz,
shuffle=False,
collate_fn=datasets.spatiotemporal_events_collate_fn,
)
test_loader = torch.utils.data.DataLoader(
test_set,
batch_size=args.test_bsz,
shuffle=False,
collate_fn=datasets.spatiotemporal_events_collate_fn,
)
if rank == 0:
logger.info(f"{len(train_set)} training examples, {len(val_set)} val examples, {len(test_set)} test examples")
x_dim = get_dim(args.data)
if args.model == "jumpcnf" and args.tpp == "neural":
model = JumpCNFSpatiotemporalModel(dim=x_dim,
hidden_dims=list(map(int, args.hdims.split("-"))),
tpp_hidden_dims=list(map(int, args.tpp_hdims.split("-"))),
actfn=args.actfn,
tpp_cond=args.tpp_cond,
tpp_style=args.tpp_style,
tpp_actfn=args.tpp_actfn,
share_hidden=args.share_hidden,
solve_reverse=args.solve_reverse,
tol=args.tol,
otreg_strength=args.otreg_strength,
tpp_otreg_strength=args.tpp_otreg_strength,
layer_type=args.layer_type,
).to(device)
elif args.model == "attncnf" and args.tpp == "neural":
model = SelfAttentiveCNFSpatiotemporalModel(dim=x_dim,
hidden_dims=list(map(int, args.hdims.split("-"))),
tpp_hidden_dims=list(map(int, args.tpp_hdims.split("-"))),
actfn=args.actfn,
tpp_cond=args.tpp_cond,
tpp_style=args.tpp_style,
tpp_actfn=args.tpp_actfn,
share_hidden=args.share_hidden,
solve_reverse=args.solve_reverse,
l2_attn=args.l2_attn,
tol=args.tol,
otreg_strength=args.otreg_strength,
tpp_otreg_strength=args.tpp_otreg_strength,
layer_type=args.layer_type,
lowvar_trace=not args.naive_hutch,
).to(device)
elif args.model == "cond_gmm" and args.tpp == "neural":
model = JumpGMMSpatiotemporalModel(dim=x_dim,
hidden_dims=list(map(int, args.hdims.split("-"))),
tpp_hidden_dims=list(map(int, args.tpp_hdims.split("-"))),
actfn=args.actfn,
tpp_cond=args.tpp_cond,
tpp_style=args.tpp_style,
tpp_actfn=args.tpp_actfn,
share_hidden=args.share_hidden,
tol=args.tol,
tpp_otreg_strength=args.tpp_otreg_strength,
).to(device)
else:
# Mix and match between spatial and temporal models.
if args.tpp == "poisson":
tpp_model = HomogeneousPoissonPointProcess()
elif args.tpp == "hawkes":
tpp_model = HawkesPointProcess()
elif args.tpp == "correcting":
tpp_model = SelfCorrectingPointProcess()
elif args.tpp == "neural":
tpp_hidden_dims = list(map(int, args.tpp_hdims.split("-")))
tpp_model = NeuralPointProcess(
cond_dim=x_dim, hidden_dims=tpp_hidden_dims, cond=args.tpp_cond, style=args.tpp_style, actfn=args.tpp_actfn,
otreg_strength=args.tpp_otreg_strength, tol=args.tol)
else:
raise ValueError(f"Invalid tpp model {args.tpp}")
if args.model == "gmm":
model = CombinedSpatiotemporalModel(GaussianMixtureSpatialModel(), tpp_model).to(device)
elif args.model == "cnf":
model = CombinedSpatiotemporalModel(
IndependentCNF(dim=x_dim, hidden_dims=list(map(int, args.hdims.split("-"))),
layer_type=args.layer_type, actfn=args.actfn, tol=args.tol, otreg_strength=args.otreg_strength,
squash_time=True),
tpp_model).to(device)
elif args.model == "tvcnf":
model = CombinedSpatiotemporalModel(
IndependentCNF(dim=x_dim, hidden_dims=list(map(int, args.hdims.split("-"))),
layer_type=args.layer_type, actfn=args.actfn, tol=args.tol, otreg_strength=args.otreg_strength),
tpp_model).to(device)
elif args.model == "jumpcnf":
model = CombinedSpatiotemporalModel(
JumpCNF(dim=x_dim, hidden_dims=list(map(int, args.hdims.split("-"))),
layer_type=args.layer_type, actfn=args.actfn, tol=args.tol, otreg_strength=args.otreg_strength),
tpp_model).to(device)
elif args.model == "attncnf":
model = CombinedSpatiotemporalModel(
SelfAttentiveCNF(dim=x_dim, hidden_dims=list(map(int, args.hdims.split("-"))),
layer_type=args.layer_type, actfn=args.actfn, l2_attn=args.l2_attn, tol=args.tol, otreg_strength=args.otreg_strength),
tpp_model).to(device)
else:
raise ValueError(f"Invalid model {args.model}")
params = []
attn_params = []
for name, p in model.named_parameters():
if "self_attns" in name:
attn_params.append(p)
else:
params.append(p)
optimizer = torch.optim.AdamW([
{"params": params},
{"params": attn_params}
], lr=args.lr, weight_decay=args.weight_decay, betas=(0.9, 0.98))
if rank == 0:
ema = utils.ExponentialMovingAverage(model)
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
if rank == 0:
logger.info(model)
begin_itr = 0
checkpt_path = os.path.join(savepath, "model.pth")
if os.path.exists(checkpt_path):
# Restart from checkpoint if run is a restart.
if rank == 0:
logger.info(f"Resuming checkpoint from {checkpt_path}")
checkpt = torch.load(checkpt_path, "cpu")
model.module.load_state_dict(checkpt["state_dict"])
optimizer.load_state_dict(checkpt["optim_state_dict"])
begin_itr = checkpt["itr"] + 1
elif args.resume:
# Check the resume flag if run is new.
if rank == 0:
logger.info(f"Resuming model from {args.resume}")
checkpt = torch.load(args.resume, "cpu")
model.module.load_state_dict(checkpt["state_dict"])
optimizer.load_state_dict(checkpt["optim_state_dict"])
begin_itr = checkpt["itr"] + 1
space_loglik_meter = utils.RunningAverageMeter(0.98)
time_loglik_meter = utils.RunningAverageMeter(0.98)
gradnorm_meter = utils.RunningAverageMeter(0.98)
model.train()
start_time = time.time()
iteration_counter = itertools.count(begin_itr)
begin_epoch = begin_itr // len(train_epoch_iter)
for epoch in range(begin_epoch, math.ceil(args.num_iterations / len(train_epoch_iter))):
batch_iter = train_epoch_iter.next_epoch_itr(shuffle=True)
for batch in batch_iter:
itr = next(iteration_counter)
optimizer.zero_grad()
event_times, spatial_locations, input_mask = map(lambda x: cast(x, device), batch)
N, T = input_mask.shape
num_events = input_mask.sum()
if num_events == 0:
raise RuntimeError("Got batch with no observations.")
space_loglik, time_loglik = model(event_times, spatial_locations, input_mask, t0, t1)
space_loglik = space_loglik.sum() / num_events
time_loglik = time_loglik.sum() / num_events
loglik = time_loglik + space_loglik
space_loglik_meter.update(space_loglik.item())
time_loglik_meter.update(time_loglik.item())
loss = loglik.mul(-1.0).mean()
loss.backward()
# Set learning rate
total_itrs = math.ceil(args.num_iterations / len(train_epoch_iter)) * len(train_epoch_iter)
lr = learning_rate_schedule(itr, args.warmup_itrs, args.lr, total_itrs)
set_learning_rate(optimizer, lr)
grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(model.parameters(), max_norm=args.gradclip).item()
gradnorm_meter.update(grad_norm)
optimizer.step()
if rank == 0:
if itr > 0.8 * args.num_iterations:
ema.apply()
else:
ema.apply(decay=0.0)
if rank == 0:
tb_writer.add_scalar("train/lr", lr, itr)
tb_writer.add_scalar("train/temporal_loss", time_loglik.item(), itr)
tb_writer.add_scalar("train/spatial_loss", space_loglik.item(), itr)
tb_writer.add_scalar("train/grad_norm", grad_norm, itr)
if itr % args.logfreq == 0:
elapsed_time = time.time() - start_time
# Average NFE across devices.
nfe = 0
for m in model.modules():
if isinstance(m, TimeVariableCNF) or isinstance(m, TimeVariableODE):
nfe += m.nfe
nfe = torch.tensor(nfe).to(device)
dist.all_reduce(nfe, op=dist.ReduceOp.SUM)
nfe = nfe // world_size
# Sum memory usage across devices.
mem = torch.tensor(memory_usage_psutil()).float().to(device)
dist.all_reduce(mem, op=dist.ReduceOp.SUM)
if rank == 0:
logger.info(
f"Iter {itr} | Epoch {epoch} | LR {lr:.5f} | Time {elapsed_time:.1f}"
f" | Temporal {time_loglik_meter.val:.4f}({time_loglik_meter.avg:.4f})"
f" | Spatial {space_loglik_meter.val:.4f}({space_loglik_meter.avg:.4f})"
f" | GradNorm {gradnorm_meter.val:.2f}({gradnorm_meter.avg:.2f})"
f" | NFE {nfe.item()}"
f" | Mem {mem.item():.2f} MB")
tb_writer.add_scalar("train/nfe", nfe, itr)
tb_writer.add_scalar("train/time_per_itr", elapsed_time / args.logfreq, itr)
start_time = time.time()
if rank == 0 and itr % args.testfreq == 0:
# ema.swap()
val_space_loglik, val_time_loglik = validate(model, val_loader, t0, t1, device)
test_space_loglik, test_time_loglik = validate(model, test_loader, t0, t1, device)
# ema.swap()
logger.info(
f"[Test] Iter {itr} | Val Temporal {val_time_loglik:.4f} | Val Spatial {val_space_loglik:.4f}"
f" | Test Temporal {test_time_loglik:.4f} | Test Spatial {test_space_loglik:.4f}")
tb_writer.add_scalar("val/temporal_loss", val_time_loglik, itr)
tb_writer.add_scalar("val/spatial_loss", val_space_loglik, itr)
tb_writer.add_scalar("test/temporal_loss", test_time_loglik, itr)
tb_writer.add_scalar("test/spatial_loss", test_space_loglik, itr)
torch.save({
"itr": itr,
"state_dict": model.module.state_dict(),
"optim_state_dict": optimizer.state_dict(),
"ema_parmas": ema.ema_params,
}, checkpt_path)
start_time = time.time()
if rank == 0:
tb_writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, choices=MAPS.keys(), default="earthquakes_jp")
parser.add_argument("--model", type=str, choices=["cond_gmm", "gmm", "cnf", "tvcnf", "jumpcnf", "attncnf"], default="gmm")
parser.add_argument("--tpp", type=str, choices=["poisson", "hawkes", "correcting", "neural"], default="poisson")
parser.add_argument("--actfn", type=str, default="swish")
parser.add_argument("--tpp_actfn", type=str, choices=TPP_ACTFNS.keys(), default="softplus")
parser.add_argument("--hdims", type=str, default="64-64-64")
parser.add_argument("--layer_type", type=str, choices=["concat", "concatsquash"], default="concat")
parser.add_argument("--tpp_hdims", type=str, default="32-32")
parser.add_argument("--tpp_nocond", action="store_false", dest='tpp_cond')
parser.add_argument("--tpp_style", type=str, choices=["split", "simple", "gru"], default="gru")
parser.add_argument("--no_share_hidden", action="store_false", dest='share_hidden')
parser.add_argument("--solve_reverse", action="store_true")
parser.add_argument("--l2_attn", action="store_true")
parser.add_argument("--naive_hutch", action="store_true")
parser.add_argument("--tol", type=float, default=1e-4)
parser.add_argument("--otreg_strength", type=float, default=1e-4)
parser.add_argument("--tpp_otreg_strength", type=float, default=1e-4)
parser.add_argument("--warmup_itrs", type=int, default=0)
parser.add_argument("--num_iterations", type=int, default=10000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight_decay", type=float, default=1e-6)
parser.add_argument("--gradclip", type=float, default=0)
parser.add_argument("--max_events", type=int, default=4000)
parser.add_argument("--test_bsz", type=int, default=32)
parser.add_argument("--experiment_dir", type=str, default="experiments")
parser.add_argument("--experiment_id", type=str, default=None)
parser.add_argument("--ngpus", type=int, default=1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--logfreq", type=int, default=10)
parser.add_argument("--testfreq", type=int, default=100)
parser.add_argument("--port", type=int, default=None)
args = parser.parse_args()
if args.port is None:
args.port = int(np.random.randint(10000, 20000))
if args.experiment_id is None:
args.experiment_id = time.strftime("%Y%m%d_%H%M%S")
experiment_name = f"{args.model}"
if args.model in ["cnf", "tvcnf", "jumpcnf", "attncnf"]:
experiment_name += f"{args.hdims}"
experiment_name += f"_{args.layer_type}"
experiment_name += f"_{args.actfn}"
experiment_name += f"_ot{args.otreg_strength}"
if args.model == "attncnf":
if args.l2_attn:
experiment_name += "_l2attn"
if args.naive_hutch:
experiment_name += "_naivehutch"
if args.model in ["cnf", "tvcnf", "jumpcnf", "attncnf"]:
experiment_name += f"_tol{args.tol}"
experiment_name += f"_{args.tpp}"
if args.tpp in ["neural"]:
experiment_name += f"{args.tpp_hdims}"
experiment_name += f"{args.tpp_style}"
experiment_name += f"_{args.tpp_actfn}"
experiment_name += f"_ot{args.tpp_otreg_strength}"
if args.tpp_cond:
experiment_name += "_cond"
if args.share_hidden and args.model in ["jumpcnf", "attncnf"] and args.tpp == "neural":
experiment_name += "_sharehidden"
if args.solve_reverse and args.model == "jumpcnf" and args.tpp == "neural":
experiment_name += "_rev"
experiment_name += f"_lr{args.lr}"
experiment_name += f"_gc{args.gradclip}"
experiment_name += f"_bsz{args.max_events}x{args.ngpus}_wd{args.weight_decay}_s{args.seed}"
experiment_name += f"_{args.experiment_id}"
savepath = os.path.join(args.experiment_dir, experiment_name)
# Top-level logger for logging exceptions into the log file.
utils.makedirs(savepath)
logger = utils.get_logger(os.path.join(savepath, "logs"))
if args.gradclip == 0:
args.gradclip = 1e10
try:
mp.set_start_method("forkserver")
mp.spawn(main,
args=(args.ngpus, args, savepath),
nprocs=args.ngpus,
join=True)
except Exception:
import traceback
logger.error(traceback.format_exc())
sys.exit(1)