-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
57 lines (39 loc) · 1.45 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import math
from matrix import Matrix
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def dsigmoid(x):
dVal = sigmoid(x)
return dVal * (1 - dVal)
class NN:
def __init__(self, input_nodes, hidden_nodes, output_nodes):
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
self.weights_ih = Matrix(hidden_nodes, input_nodes)
self.weights_ho = Matrix(output_nodes, hidden_nodes)
self.weights_ih.randomize(start=-1, end=1)
self.weights_ho.randomize(start=-1, end=1)
self.lr = 0.01
def predict(self, input_matrix):
output = self.weights_ih * input_matrix
output.map(sigmoid)
output = self.weights_ho * output
output.map(sigmoid)
return output
def train(self, input_matrix, actual_matrix):
predicted = self.predict(input_matrix)
error = (actual - predicted)**2
error_ho = actual - predicted
input_ho = self.weights_ih * input_matrix
input_ho.map(sigmoid)
deltas_ho = error_ho * (self.weights_ho * input_ho).map(dsigmoid) * self.lr
deltas_ho = Matrix.transpose(self.weights_ho) * deltas_ho
print(self.weights_ho)
print(deltas_ho)
# self.weights_ho -= deltas_ho
return Matrix.transpose(self.weights_ho)
nn = NN(3, 2, 1)
inputs = Matrix.from_array([1, 2, 3])
actual = Matrix.from_array([4])
print(nn.train(inputs, actual))