forked from rasbt/machine-learning-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch04.py
694 lines (341 loc) · 14.8 KB
/
ch04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# coding: utf-8
import sys
from python_environment_check import check_packages
import pandas as pd
from io import StringIO
from sklearn.impute import SimpleImputer
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.base import clone
from itertools import combinations
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'numpy': '1.21.2',
'matplotlib': '3.4.3',
'sklearn': '1.0',
'pandas': '1.3.2'
}
check_packages(d)
# # Chapter 4 - Building Good Training Datasets – Data Preprocessing
# ### Overview
# - [Dealing with missing data](#Dealing-with-missing-data)
# - [Identifying missing values in tabular data](#Identifying-missing-values-in-tabular-data)
# - [Eliminating training examples or features with missing values](#Eliminating-training-examples-or-features-with-missing-values)
# - [Imputing missing values](#Imputing-missing-values)
# - [Understanding the scikit-learn estimator API](#Understanding-the-scikit-learn-estimator-API)
# - [Handling categorical data](#Handling-categorical-data)
# - [Nominal and ordinal features](#Nominal-and-ordinal-features)
# - [Mapping ordinal features](#Mapping-ordinal-features)
# - [Encoding class labels](#Encoding-class-labels)
# - [Performing one-hot encoding on nominal features](#Performing-one-hot-encoding-on-nominal-features)
# - [Partitioning a dataset into a separate training and test set](#Partitioning-a-dataset-into-seperate-training-and-test-sets)
# - [Bringing features onto the same scale](#Bringing-features-onto-the-same-scale)
# - [Selecting meaningful features](#Selecting-meaningful-features)
# - [L1 and L2 regularization as penalties against model complexity](#L1-and-L2-regularization-as-penalties-against-model-omplexity)
# - [A geometric interpretation of L2 regularization](#A-geometric-interpretation-of-L2-regularization)
# - [Sparse solutions with L1 regularization](#Sparse-solutions-with-L1-regularization)
# - [Sequential feature selection algorithms](#Sequential-feature-selection-algorithms)
# - [Assessing feature importance with Random Forests](#Assessing-feature-importance-with-Random-Forests)
# - [Summary](#Summary)
# # Dealing with missing data
# ## Identifying missing values in tabular data
csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,'''
# If you are using Python 2.7, you need
# to convert the string to unicode:
if (sys.version_info < (3, 0)):
csv_data = unicode(csv_data)
df = pd.read_csv(StringIO(csv_data))
df
df.isnull().sum()
# access the underlying NumPy array
# via the `values` attribute
df.values
# ## Eliminating training examples or features with missing values
# remove rows that contain missing values
df.dropna(axis=0)
# remove columns that contain missing values
df.dropna(axis=1)
# remove columns that contain missing values
df.dropna(axis=1)
# only drop rows where all columns are NaN
df.dropna(how='all')
# drop rows that have fewer than 3 real values
df.dropna(thresh=4)
# only drop rows where NaN appear in specific columns (here: 'C')
df.dropna(subset=['C'])
# ## Imputing missing values
# again: our original array
df.values
# impute missing values via the column mean
imr = SimpleImputer(missing_values=np.nan, strategy='mean')
imr = imr.fit(df.values)
imputed_data = imr.transform(df.values)
imputed_data
df.fillna(df.mean())
# ## Understanding the scikit-learn estimator API
# # Handling categorical data
# ## Nominal and ordinal features
df = pd.DataFrame([['green', 'M', 10.1, 'class2'],
['red', 'L', 13.5, 'class1'],
['blue', 'XL', 15.3, 'class2']])
df.columns = ['color', 'size', 'price', 'classlabel']
df
# ## Mapping ordinal features
size_mapping = {'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)
df
inv_size_mapping = {v: k for k, v in size_mapping.items()}
df['size'].map(inv_size_mapping)
# ## Encoding class labels
# create a mapping dict
# to convert class labels from strings to integers
class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
class_mapping
# to convert class labels from strings to integers
df['classlabel'] = df['classlabel'].map(class_mapping)
df
# reverse the class label mapping
inv_class_mapping = {v: k for k, v in class_mapping.items()}
df['classlabel'] = df['classlabel'].map(inv_class_mapping)
df
# Label encoding with sklearn's LabelEncoder
class_le = LabelEncoder()
y = class_le.fit_transform(df['classlabel'].values)
y
# reverse mapping
class_le.inverse_transform(y)
# ## Performing one-hot encoding on nominal features
X = df[['color', 'size', 'price']].values
color_le = LabelEncoder()
X[:, 0] = color_le.fit_transform(X[:, 0])
X
X = df[['color', 'size', 'price']].values
color_ohe = OneHotEncoder()
color_ohe.fit_transform(X[:, 0].reshape(-1, 1)).toarray()
X = df[['color', 'size', 'price']].values
c_transf = ColumnTransformer([ ('onehot', OneHotEncoder(), [0]),
('nothing', 'passthrough', [1, 2])])
c_transf.fit_transform(X).astype(float)
# one-hot encoding via pandas
pd.get_dummies(df[['price', 'color', 'size']])
# multicollinearity guard in get_dummies
pd.get_dummies(df[['price', 'color', 'size']], drop_first=True)
# multicollinearity guard for the OneHotEncoder
color_ohe = OneHotEncoder(categories='auto', drop='first')
c_transf = ColumnTransformer([ ('onehot', color_ohe, [0]),
('nothing', 'passthrough', [1, 2])])
c_transf.fit_transform(X).astype(float)
# ## Optional: Encoding Ordinal Features
# If we are unsure about the numerical differences between the categories of ordinal features, or the difference between two ordinal values is not defined, we can also encode them using a threshold encoding with 0/1 values. For example, we can split the feature "size" with values M, L, and XL into two new features "x > M" and "x > L". Let's consider the original DataFrame:
df = pd.DataFrame([['green', 'M', 10.1, 'class2'],
['red', 'L', 13.5, 'class1'],
['blue', 'XL', 15.3, 'class2']])
df.columns = ['color', 'size', 'price', 'classlabel']
df
# We can use the `apply` method of pandas' DataFrames to write custom lambda expressions in order to encode these variables using the value-threshold approach:
df['x > M'] = df['size'].apply(lambda x: 1 if x in {'L', 'XL'} else 0)
df['x > L'] = df['size'].apply(lambda x: 1 if x == 'XL' else 0)
del df['size']
df
# # Partitioning a dataset into a seperate training and test set
df_wine = pd.read_csv('https://archive.ics.uci.edu/'
'ml/machine-learning-databases/wine/wine.data',
header=None)
# if the Wine dataset is temporarily unavailable from the
# UCI machine learning repository, un-comment the following line
# of code to load the dataset from a local path:
# df_wine = pd.read_csv('wine.data', header=None)
df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
'Proline']
print('Class labels', np.unique(df_wine['Class label']))
df_wine.head()
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3,
random_state=0,
stratify=y)
# # Bringing features onto the same scale
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
# A visual example:
ex = np.array([0, 1, 2, 3, 4, 5])
print('standardized:', (ex - ex.mean()) / ex.std())
# Please note that pandas uses ddof=1 (sample standard deviation)
# by default, whereas NumPy's std method and the StandardScaler
# uses ddof=0 (population standard deviation)
# normalize
print('normalized:', (ex - ex.min()) / (ex.max() - ex.min()))
# # Selecting meaningful features
# ...
# ## L1 and L2 regularization as penalties against model complexity
# ## A geometric interpretation of L2 regularization
# ## Sparse solutions with L1-regularization
# For regularized models in scikit-learn that support L1 regularization, we can simply set the `penalty` parameter to `'l1'` to obtain a sparse solution:
LogisticRegression(penalty='l1')
# Applied to the standardized Wine data ...
lr = LogisticRegression(penalty='l1', C=1.0, solver='liblinear', multi_class='ovr')
# Note that C=1.0 is the default. You can increase
# or decrease it to make the regulariztion effect
# stronger or weaker, respectively.
lr.fit(X_train_std, y_train)
print('Training accuracy:', lr.score(X_train_std, y_train))
print('Test accuracy:', lr.score(X_test_std, y_test))
lr.intercept_
np.set_printoptions(8)
lr.coef_[lr.coef_!=0].shape
lr.coef_
fig = plt.figure()
ax = plt.subplot(111)
colors = ['blue', 'green', 'red', 'cyan',
'magenta', 'yellow', 'black',
'pink', 'lightgreen', 'lightblue',
'gray', 'indigo', 'orange']
weights, params = [], []
for c in np.arange(-4., 6.):
lr = LogisticRegression(penalty='l1', C=10.**c, solver='liblinear',
multi_class='ovr', random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)
weights = np.array(weights)
for column, color in zip(range(weights.shape[1]), colors):
plt.plot(params, weights[:, column],
label=df_wine.columns[column + 1],
color=color)
plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('Weight coefficient')
plt.xlabel('C (inverse regularization strength)')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center',
bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)
#plt.savefig('figures/04_08.png', dpi=300,
# bbox_inches='tight', pad_inches=0.2)
plt.show()
# ## Sequential feature selection algorithms
class SBS:
def __init__(self, estimator, k_features, scoring=accuracy_score,
test_size=0.25, random_state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self.k_features = k_features
self.test_size = test_size
self.random_state = random_state
def fit(self, X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.test_size,
random_state=self.random_state)
dim = X_train.shape[1]
self.indices_ = tuple(range(dim))
self.subsets_ = [self.indices_]
score = self._calc_score(X_train, y_train,
X_test, y_test, self.indices_)
self.scores_ = [score]
while dim > self.k_features:
scores = []
subsets = []
for p in combinations(self.indices_, r=dim - 1):
score = self._calc_score(X_train, y_train,
X_test, y_test, p)
scores.append(score)
subsets.append(p)
best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets_.append(self.indices_)
dim -= 1
self.scores_.append(scores[best])
self.k_score_ = self.scores_[-1]
return self
def transform(self, X):
return X[:, self.indices_]
def _calc_score(self, X_train, y_train, X_test, y_test, indices):
self.estimator.fit(X_train[:, indices], y_train)
y_pred = self.estimator.predict(X_test[:, indices])
score = self.scoring(y_test, y_pred)
return score
knn = KNeighborsClassifier(n_neighbors=5)
# selecting features
sbs = SBS(knn, k_features=1)
sbs.fit(X_train_std, y_train)
# plotting performance of feature subsets
k_feat = [len(k) for k in sbs.subsets_]
plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.02])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
plt.tight_layout()
# plt.savefig('figures/04_09.png', dpi=300)
plt.show()
k3 = list(sbs.subsets_[10])
print(df_wine.columns[1:][k3])
knn.fit(X_train_std, y_train)
print('Training accuracy:', knn.score(X_train_std, y_train))
print('Test accuracy:', knn.score(X_test_std, y_test))
knn.fit(X_train_std[:, k3], y_train)
print('Training accuracy:', knn.score(X_train_std[:, k3], y_train))
print('Test accuracy:', knn.score(X_test_std[:, k3], y_test))
# # Assessing feature importance with Random Forests
feat_labels = df_wine.columns[1:]
forest = RandomForestClassifier(n_estimators=500,
random_state=1)
forest.fit(X_train, y_train)
importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]
for f in range(X_train.shape[1]):
print("%2d) %-*s %f" % (f + 1, 30,
feat_labels[indices[f]],
importances[indices[f]]))
plt.title('Feature importance')
plt.bar(range(X_train.shape[1]),
importances[indices],
align='center')
plt.xticks(range(X_train.shape[1]),
feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
# plt.savefig('figures/04_10.png', dpi=300)
plt.show()
sfm = SelectFromModel(forest, threshold=0.1, prefit=True)
X_selected = sfm.transform(X_train)
print('Number of features that meet this threshold criterion:',
X_selected.shape[1])
# Now, let's print the 3 features that met the threshold criterion for feature selection that we set earlier (note that this code snippet does not appear in the actual book but was added to this notebook later for illustrative purposes):
for f in range(X_selected.shape[1]):
print("%2d) %-*s %f" % (f + 1, 30,
feat_labels[indices[f]],
importances[indices[f]]))
# # Summary
# ...
# ---
#
# Readers may ignore the next cell.