-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
110 lines (87 loc) · 3.39 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#Meet Robo: your friend
# print("Start Chatbot file", flush=True, end='')
#import necessary libraries
import io
import random
import string # to process standard python strings
import warnings
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import warnings
import sys
warnings.filterwarnings('ignore')
import nltk
from nltk.stem import WordNetLemmatizer
nltk.download('popular', quiet=True) # for downloading packages
# uncomment the following only the first time
# UNCOMMENT FOR FIRST TIME
# UNCOMMENT FOR FIRST TIME
# UNCOMMENT FOR FIRST TIME
#nltk.download('punkt') # first-time use only
#nltk.download('wordnet') # first-time use only
#Reading in the corpus
# s = input("trump or modi \n")
# print("Start Chatbot file", flush=True, end='')
# s = sys.argv[1] + ".txt"
# print(s, flush=True, end='')
# with open(s,'r', encoding='utf8', errors ='ignore') as fin:
# raw = fin.read().lower()
# UNCOMMENT THE UPPER CODE FOR FIRST TIME
raw = sys.argv[2].lower()
#TOkenisation
sent_tokens = nltk.sent_tokenize(raw)# converts to list of sentences
word_tokens = nltk.word_tokenize(raw)# converts to list of words
# Preprocessing
lemmer = WordNetLemmatizer()
def LemTokens(tokens):
return [lemmer.lemmatize(token) for token in tokens]
remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation)
def LemNormalize(text):
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
# Keyword Matching
GREETING_INPUTS = ("hello", "hi", "greetings", "sup", "what's up","hey",)
GREETING_RESPONSES = ["hi", "hey", "*nods*", "hi there", "hello", "I am glad! You are talking to me"]
def greeting(sentence):
"""If user's input is a greeting, return a greeting response"""
for word in sentence.split():
if word.lower() in GREETING_INPUTS:
return random.choice(GREETING_RESPONSES)
# Generating response
def response(user_response):
robo_response=''
sent_tokens.append(user_response)
TfidfVec = TfidfVectorizer(tokenizer=LemNormalize, stop_words='english')
tfidf = TfidfVec.fit_transform(sent_tokens)
vals = cosine_similarity(tfidf[-1], tfidf)
idx=vals.argsort()[0][-2]
flat = vals.flatten()
flat.sort()
req_tfidf = flat[-2]
if(req_tfidf==0):
robo_response=robo_response+"I am sorry! I don't understand you"
return robo_response
else:
robo_response = robo_response+sent_tokens[idx]
return robo_response
flag=True
# print("ROBO: My name is Robo. I will answer your queries about Chatbots. If you want to exit, type Bye!")
while(flag==True):
user_response = sys.argv[1] # RESPONSE input
user_response=user_response.lower()
if(user_response!='bye'):
if(user_response=='thanks' or user_response=='thank you' ):
flag=False
print("You are welcome..")
else:
if(greeting(user_response)!=None):
print(greeting(user_response))
break
else:
# print("ROBO: ",end="")
print(response(user_response), flush=True, end='')
break
sent_tokens.remove(user_response)
else:
flag=False
print("Bye! take care..")