forked from tmbdev/clstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test-deriv.cc
210 lines (195 loc) · 6 KB
/
test-deriv.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <assert.h>
#include <math.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "clstm.h"
#include "extras.h"
#include "utils.h"
using std_string = std::string;
#define string std_string
using std::vector;
using std::shared_ptr;
using std::unique_ptr;
using std::to_string;
using std::make_pair;
using std::cout;
using std::stoi;
using namespace Eigen;
using namespace ocropus;
double sqr(double x) { return x * x; }
double randu() {
static int count = 1;
for (;;) {
double x = cos(count * 3.7);
count++;
if (fabs(x) > 0.1) return x;
}
}
void randseq(Sequence &a, int N, int n, int m) {
a.resize(N, n, m);
for (int t = 0; t < N; t++)
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a[t].v(i, j) = randu();
}
void randparams(vector<Params> &a) {
int N = a.size();
for (int t = 0; t < N; t++) {
int n = a[t].rows();
int m = a[t].cols();
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) a[t].v(i, j) = randu();
}
}
double err(Sequence &a, Sequence &b) {
assert(a.size() == b.size());
assert(a.rows() == b.rows());
assert(a.cols() == b.cols());
int N = a.size(), n = a.rows(), m = a.cols();
double total = 0.0;
for (int t = 0; t < N; t++)
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) total += sqr(a[t].v(i, j) - b[t].v(i, j));
return total;
}
void zero_grad(Network net) {
walk_params(net, [](const string &s, Params *p) { p->zeroGrad(); });
}
void get_params(vector<Params> ¶ms, Network net) {
params.clear();
walk_params(
net, [¶ms](const string &s, Params *p) { params.emplace_back(*p); });
}
void set_params(Network net, vector<Params> ¶ms) {
int index = 0;
walk_params(net, [&index, ¶ms](const string &s, Params *p) {
*p = params[index++];
});
assert(index == params.size());
}
struct Minimizer {
double value = INFINITY;
double param = 0;
void add(double value, double param = NAN) {
if (value >= this->value) return;
this->value = value;
this->param = param;
}
};
struct Maximizer {
double value = -INFINITY;
double param = 0;
void add(double value, double param = NAN) {
if (value <= this->value) return;
this->value = value;
this->param = param;
}
};
void test_net(Network net, string id = "", int N = 4, int bs = 1) {
if (id == "") id = net->kind;
print("testing", id);
int ninput = net->ninput();
int noutput = net->noutput();
;
bool verbose = getienv("verbose", 0);
vector<Params> params, params1;
get_params(params, net);
randparams(params);
set_params(net, params);
Sequence xs, ys;
randseq(xs, N, ninput, bs);
randseq(ys, N, noutput, bs);
Maximizer maxinerr;
for (int t = 0; t < N; t++) {
for (int i = 0; i < ninput; i++) {
for (int b = 0; b < bs; b++) {
Minimizer minerr;
for (float h = 1e-6; h < 1.0; h *= 10) {
set_inputs(net, xs);
net->forward();
double out1 = err(net->outputs, ys);
net->inputs[t].v(i, b) += h;
net->forward();
double out2 = err(net->outputs, ys);
double num_deriv = (out2 - out1) / h;
set_inputs(net, xs);
net->forward();
set_targets(net, ys);
net->backward();
double a_deriv = net->inputs[t].d(i, b);
double error = fabs(1.0 - num_deriv / a_deriv / -2.0);
minerr.add(error, h);
}
if (verbose) print("deltas", t, i, b, minerr.value, minerr.param);
assert(minerr.value < 0.1);
maxinerr.add(minerr.value);
}
}
}
set_inputs(net, xs);
net->forward();
double out = err(net->outputs, ys);
set_targets(net, ys);
zero_grad(net);
net->backward();
get_params(params, net);
Maximizer maxparamerr;
for (int k = 0; k < params.size(); k++) {
Params &p = params[k];
int n = p.rows(), m = p.cols();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
Minimizer minerr;
for (float h = 1e-6; h < 1.0; h *= 10) {
params1 = params;
params1[k].v(i, j) += h;
set_params(net, params1);
net->forward();
double out1 = err(net->outputs, ys);
double num_deriv = (out1 - out) / h;
double a_deriv = params[k].d(i, j);
double error = fabs(1.0 - num_deriv / a_deriv / -2.0);
minerr.add(error, h);
}
if (verbose) print("params", k, i, j, minerr.value, minerr.param);
assert(minerr.value < 0.1);
maxparamerr.add(minerr.value);
}
}
}
print("OK", maxinerr.value, maxparamerr.value);
}
int main(int argc, char **argv) {
TRY {
test_net(
make_net("perplstm", {{"ninput", 3}, {"nhidden", 4}, {"noutput", 5}}),
"perplstm", 11, 13);
test_net(make_net("twod", {{"ninput", 3},
{"nhidden", 4},
{"noutput", 5},
{"output_type", "SigmoidLayer"}}),
"twod", 11, 13);
test_net(layer("LinearLayer", 7, 3, {}, {}));
test_net(layer("SigmoidLayer", 7, 3, {}, {}));
test_net(layer("TanhLayer", 7, 3, {}, {}));
test_net(layer("NPLSTM", 7, 3, {}, {}));
test_net(
layer("Reversed", 7, 3, {}, {layer("SigmoidLayer", 7, 3, {}, {})}));
test_net(layer("Parallel", 7, 3, {}, {layer("SigmoidLayer", 7, 3, {}, {}),
layer("LinearLayer", 7, 3, {}, {})}),
"parallel(sigmoid,linear)");
test_net(make_net("bidi", {{"ninput", 7},
{"noutput", 3},
{"nhidden", 5},
{"output_type", "SigmoidLayer"}}),
"bidi");
test_net(layer("Stacked", 3, 3, {}, {layer("Btswitch", 3, 3, {}, {}),
layer("Btswitch", 3, 3, {}, {})}),
"btswitch");
test_net(layer("Batchstack", 3, 9, {}, {}), "Batchstack", 4, 5);
// not testing: SoftmaxLayer and ReluLayer
}
CATCH(const char *message) { print("ERROR", message); }
}