-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
65 lines (49 loc) · 1.98 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
__author__ = 'aureliabustos'
import numpy as np
import os
cwd = os.getcwd()
data = "./textData/labeledEligibility.csv"
def balanced_subsample(y, size=None):
subsample = []
if size is None:
n_smp = y.value_counts().min()
else:
n_smp = int(size / len(y.value_counts().index))
for label in y.value_counts().index:
samples = y[y == label].index.values
index_range = range(samples.shape[0])
indexes = np.random.choice(index_range, size=n_smp, replace=False)
subsample += samples[indexes].tolist()
return subsample
def generate_small_set(set_size =None , fname = None):
import pandas as pd
print('Loading text dataset')
df = pd.read_csv(data, sep='\t', header=None, names = ["eligible", "eligibility"])
print(df.describe())
#balance labels
# Apply the random under-sampling
rus = balanced_subsample(df.eligible, size=set_size)
df = df.iloc[rus,:]
print("sample after under-sampling: " )
print(df.describe() )
if set_size != None: #write subsample but not full sample
fname = fname + str(set_size) + '.csv'
df.to_csv(sep='\t', path_or_buf=fname, index=False, header = False)
return df
def generate_small_set_labeled_sentence_embeddings(set_size =None , fname = None):
import pandas as pd
print('Loading sentence embeddings dataset')
data_path = os.path.join(cwd, "/textData/labeledSentenceVectorsFastText.csv")
print(data_path)
df = pd.read_csv(cwd + data_path, sep='\t', header=None, names = ["eligible", "eligibility_embeddings"])
print(df.describe())
#balance labels
# Apply the random under-sampling
rus = balanced_subsample(df.eligible, size=set_size)
df = df.iloc[rus,:]
print("sample after under-sampling: " )
print(df.describe() )
if set_size != None: #write subsample but not full sample
fname = fname + str(set_size) + '.csv'
df.to_csv(sep='\t', path_or_buf=fname, index=False, header = False)
return df