-
Notifications
You must be signed in to change notification settings - Fork 25
/
tabular.py
681 lines (545 loc) · 26.6 KB
/
tabular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from tqdm import tqdm
import time
import random
import os
import argparse
import itertools
from torch import nn
import priors
from train import train, Losses
import encoders
from datasets import *
from priors.utils import trunc_norm_sampler_f, gamma_sampler_f
import pyro
import pyro.distributions as dist
from pyro.nn import PyroModule, PyroSample
from pyro.infer.autoguide import AutoDiagonalNormal
from pyro.infer import SVI, Trace_ELBO, Predictive, MCMC, NUTS
from catboost import CatBoostClassifier, Pool
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn import neighbors, datasets
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.metrics import accuracy_score, roc_auc_score
import xgboost as xgb
import matplotlib.pyplot as plt
CV = 5
param_grid = {}
metric_used = roc_auc_score
def get_uniform_single_eval_pos_sampler(max_len):
"""
Just sample any evaluation position with the same weight
:return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
"""
return lambda: random.choices(range(max_len))[0]
def get_mlp_prior_hyperparameters(config):
sigma_sampler = gamma_sampler_f(config["prior_sigma_gamma_k"], config["prior_sigma_gamma_theta"])
noise_std_sampler = gamma_sampler_f(config["prior_noise_std_gamma_k"], config["prior_noise_std_gamma_theta"])
mlp_prior_hyperparameters = (list(config["prior_nlayers_sampler"].values())[0]
, list(config["prior_emsize_sampler"].values())[0]
, config["prior_activations"]
, sigma_sampler
, noise_std_sampler
, list(config["prior_dropout_sampler"].values())[0]
, True
, list(config["prior_num_features_used_sampler"].values())[0]
, list(config["prior_causes_sampler"].values())[0] if config['prior_is_causal'] else None
, config["prior_is_causal"]
, config["prior_pre_sample_causes"] if config['prior_is_causal'] else None
, config["prior_pre_sample_weights"] if config['prior_is_causal'] else None
, config["prior_y_is_effect"] if config['prior_is_causal'] else None
, config["prior_order_y"]
, config["prior_normalize_by_used_features"]
, list(config["prior_categorical_feats"].values())[0] if config['prior_is_causal'] else None
, 0.0
)
return mlp_prior_hyperparameters
def get_gp_mix_prior_hyperparameters(config):
return {'lengthscale_concentration': config["prior_lengthscale_concentration"],
'nu': config["prior_nu"],
'outputscale_concentration': config["prior_outputscale_concentration"],
'categorical_data': config["prior_y_minmax_norm"],
'y_minmax_norm': config["prior_lengthscale_concentration"],
'noise_concentration': config["prior_noise_concentration"],
'noise_rate': config["prior_noise_rate"]}
def get_gp_prior_hyperparameters(config):
return (config['prior_noise']
, lambda : config['prior_outputscale']
, lambda : config['prior_lengthscale'] # lengthscale, Höher mehr sep
, True
, list(config['prior_num_features_used_sampler'].values())[0]
, config['prior_normalize_by_used_features']
, config['prior_order_y'])
def get_meta_gp_prior_hyperparameters(config):
lengthscale_sampler = trunc_norm_sampler_f(config["prior_lengthscale_mean"], config["prior_lengthscale_mean"] * config["prior_lengthscale_std_f"])
outputscale_sampler = trunc_norm_sampler_f(config["prior_outputscale_mean"], config["prior_outputscale_mean"] * config["prior_outputscale_std_f"])
return (config['prior_noise']
, outputscale_sampler
, lengthscale_sampler # lengthscale, Höher mehr sep
, True
, list(config['prior_num_features_used_sampler'].values())[0]
, config['prior_normalize_by_used_features']
, config['prior_order_y'])
def get_model(config, device, eval_positions, should_train=True, verbose=False):
extra_kwargs = {}
if config['prior_type'] == 'mlp':
prior_hyperparameters = get_mlp_prior_hyperparameters(config)
model_proto = priors.mlp.DataLoader
extra_kwargs['batch_size_per_gp_sample'] = 8
elif config['prior_type'] == 'gp':
prior_hyperparameters = get_gp_prior_hyperparameters(config)
model_proto = priors.fast_gp.DataLoader
elif config['prior_type'] == 'custom_gp_mix':
prior_hyperparameters = get_meta_gp_prior_hyperparameters(config)
model_proto = priors.fast_gp.DataLoader
elif config['prior_type'] == 'gp_mix':
prior_hyperparameters = get_gp_mix_prior_hyperparameters(config)
model_proto = priors.fast_gp_mix.DataLoader
else:
raise Exception()
epochs = 0 if not should_train else config['epochs']
model = train(model_proto
, Losses.bce
, encoders.Linear
, emsize=config['emsize']
, nhead=config['nhead']
, y_encoder_generator=encoders.Linear
, pos_encoder_generator=None
, batch_size=config['batch_size']
, nlayers=config['nlayers']
, nhid=config['emsize'] * config['nhid_factor']
, epochs=epochs
, warmup_epochs=epochs // 4
, bptt=config['bptt']
, gpu_device=device
, dropout=config['dropout']
, steps_per_epoch=100
, single_eval_pos_gen=get_uniform_single_eval_pos_sampler(max(eval_positions) + 1)
, extra_prior_kwargs_dict={
'num_features': config['num_features']
# , 'canonical_args': None
, 'fuse_x_y': False
, 'hyperparameters': prior_hyperparameters
, **extra_kwargs
}
, lr=config['lr']
, verbose=verbose)
return model
## General eval
def evaluate(datasets, model, method, bptt, eval_position_range, device, max_features=0, plot=False, extend_features=False, save=True, rescale_features=False, overwrite=False,
max_samples=40, path_interfix=''):
# eval_position_range: last entry is the one used to calculate metricuracy; up to index is used for training
result = {'metric': 'auc'}
metric_sum = 0
for [name, X, y, categorical_feats] in datasets:
result_ds = {}
path = f'/home/anon/prior-fitting/results/tabular/{path_interfix}/results_{method}_{name}.npy'
if (os.path.isfile(path)) and not overwrite:
with open(path, 'rb') as f:
result_ds = np.load(f, allow_pickle=True).tolist()
if 'time' in result_ds:
result_ds[name+'_time'] = result_ds['time']
del result_ds['time']
result.update(result_ds)
mean_metric = float(result[name + '_mean_metric_at_' + str(eval_position_range[-1])])
metric_sum += mean_metric
print(f'Loaded saved result for {name} (mean metric {mean_metric})')
continue
print('Evaluating ' + str(name))
rescale_features_factor = X.shape[1] / max_features if rescale_features and extend_features else 1.0
if extend_features:
X = torch.cat([X, torch.zeros((X.shape[0], max_features - X.shape[1]))], -1)
start_time = time.time()
ds_result = evaluate_dataset(X.to(device), y.to(device), categorical_feats, model, bptt, eval_position_range,
rescale_features=rescale_features_factor, max_samples=max_samples)
elapsed = time.time() - start_time
for i, r in enumerate(ds_result):
metric, outputs, ys = r
if save:
result_ds[name + '_per_ds_metric_at_' + str(eval_position_range[i])] = metric
result_ds[name + '_outputs_at_' + str(eval_position_range[i])] = outputs
result_ds[name + '_ys_at_' + str(eval_position_range[i])] = ys
result_ds[name + '_mean_metric_at_' + str(eval_position_range[i])] = metric_used(ys.detach().cpu().flatten(), outputs.flatten())
result_ds[name + '_time'] = elapsed
if save:
with open(path, 'wb') as f:
np.save(f, result_ds)
result.update(result_ds)
metric_sum += float(metric[-1].mean())
for pos in eval_position_range:
result[f'mean_metric_at_{pos}'] = np.array([result[d[0] + '_mean_metric_at_' + str(pos)] for d in datasets]).mean()
result['mean_metric'] = np.array([result['mean_metric_at_' + str(pos)] for pos in eval_position_range]).mean()
return result
def evaluate_dataset(X, y, categorical_feats, model, bptt, eval_position_range, plot=False, rescale_features=1.0,
max_samples=40):
result = []
for eval_position in eval_position_range:
r = evaluate_position(X, y, categorical_feats, model, bptt, eval_position, rescale_features=rescale_features,
max_samples=max_samples)
result.append(r)
print('\t Eval position ' + str(eval_position) + ' done..')
if plot:
plt.plot(np.array(list(eval_position_range)), np.array([r.mean() for r in result]))
return result
def evaluate_position(X, y, categorical_feats, model, bptt, eval_position, rescale_features=1.0, max_samples=40):
# right now permutation style is to test performance on one before the last element
# eval_position = bptt - eval_positions
# TODO: Make sure that no bias exists
# assert(eval_position % 2 == 0)
eval_xs = []
eval_ys = []
num_evals = len(X) - bptt # len(X)-bptt-(bptt-eval_position)+1
# Generate permutations of evaluation data
# with torch.random.fork_rng():
# torch.random.manual_seed(13)
# ps = [torch.randperm(2*(bptt - eval_position)) for _ in range(num_evals)]
for i in range(num_evals):
# Select chunk of data with extra evaluation positions that can be discarded
# x_ = X[i:i+bptt+(bptt-eval_position)].clone()
# y_ = y[i:i+bptt+(bptt-eval_position)].clone()
# # Permutate evaluation positions
# perm_range = slice(eval_position,bptt+(bptt - eval_position))
# x_[perm_range] = x_[perm_range][ps[i]]
# y_[perm_range] = y_[perm_range][ps[i]]
# # Discard extra evaluation positions
# x_ = x_[0:bptt]
# y_ = y_[0:bptt]
x_ = X[i:i + bptt].clone()
y_ = y[i:i + bptt].clone()
eval_xs.append(x_)
eval_ys.append(y_)
# eval data will be ordered in training range and
# will be a random subset of 2*eval_position data points in eval positions
eval_xs = torch.stack(eval_xs, 1)
eval_ys = torch.stack(eval_ys, 1)
# Limit to N samples per dataset
with torch.random.fork_rng():
torch.random.manual_seed(13)
sel = torch.randperm(eval_xs.shape[1])
eval_xs = eval_xs[:, sel[0:max_samples], :]
eval_ys = eval_ys[:, sel[0:max_samples]]
#
# if quantile_transform:
# for sample in range(0, eval_xs.shape[1]):
# quantile_transformer = preprocessing.QuantileTransformer(random_state=0, n_quantiles=eval_xs.shape[0])
# quantile_transformer.fit(eval_xs[:eval_position, sample].cpu())
# eval_xs[:, sample] = torch.tensor(quantile_transformer.transform(eval_xs[:, sample].cpu()))
if isinstance(model, nn.Module):
model.eval()
outputs = np.zeros(shape=(len(list(range(eval_position, eval_xs.shape[0]))), eval_xs.shape[1]))
for i, pos in enumerate(range(eval_position, eval_xs.shape[0])):
eval_x = torch.cat([eval_xs[:eval_position], eval_xs[pos].unsqueeze(0)])
eval_y = eval_ys[:eval_position]
# Center data using training positions so that it matches priors
mean = eval_x.mean(0)
std = eval_x.std(0) + .000001
eval_x = (eval_x - mean) / std
eval_x = eval_x / rescale_features
output = torch.sigmoid(model((eval_x, eval_y.float()), single_eval_pos=eval_position)).squeeze(-1)
outputs[i, :] = output.detach().cpu().numpy()
metric_per_t = np.array([metric_used(eval_ys[eval_position:, i].cpu(), outputs[:, i]) for i in range(eval_xs.shape[1])])
return metric_per_t, outputs, eval_ys[eval_position:]
else:
metric_eval_pos, outputs = batch_pred(model, eval_xs, eval_ys, categorical_feats, start=eval_position)
return metric_eval_pos, outputs, eval_ys[eval_position:]
def batch_pred(metric_function, eval_xs, eval_ys, categorical_feats, start=2):
metrics = []
outputs = []
# for i in tqdm(list(range(start,len(eval_xs)))):
eval_splits = list(zip(eval_xs.transpose(0, 1), eval_ys.transpose(0, 1)))
for eval_x, eval_y in tqdm(eval_splits): # eval x is One sample i.e. bptt x num_features
mean = eval_x[:start].mean(0)
std = eval_x[:start].std(0) + .000001
eval_x = (eval_x - mean) / std
metric, output = metric_function(eval_x[:start], eval_y[:start], eval_x[start:], eval_y[start:], categorical_feats)
metrics += [metric]
outputs += [output]
# metrics_per_t.append(metric_sum/eval_xs.shape[1])
return np.array(metrics), np.array(outputs).T
param_grid['logistic'] = {'solver': ['saga'], 'penalty': ['l1', 'l2', 'none'], 'tol': [1e-2, 1e-4, 1e-10], 'max_iter': [500], 'fit_intercept': [True, False], 'C': [1e-5, 0.001, 0.01, 0.1, 1.0, 2.0]} # 'normalize': [False],
def logistic_metric(x, y, test_x, test_y, cat_features):
import warnings
def warn(*args, **kwargs):
pass
warnings.warn = warn
x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
clf = LogisticRegression()
# create a dictionary of all values we want to test for n_neighbors
# use gridsearch to test all values for n_neighbors
clf = GridSearchCV(clf, param_grid['logistic'], cv=min(CV, x.shape[0]//2))
# fit model to data
clf.fit(x, y.long())
pred = clf.predict_proba(test_x)[:, 1]
metric = metric_used(test_y.cpu().numpy(), pred)
return metric, pred
## KNN
param_grid['knn'] = {'n_neighbors (max number of samples)': np.arange(1, 6)}
def knn_metric(x, y, test_x, test_y, cat_features):
x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
clf = neighbors.KNeighborsClassifier() # min(param['n_neighbors'],len(y)))
param_grid_knn = {'n_neighbors': np.arange(1, min(6, len(y) - 1))}
# create a dictionary of all values we want to test for n_neighbors
# use gridsearch to test all values for n_neighbors
clf = GridSearchCV(clf, param_grid_knn, cv=min(CV, x.shape[0]//2))
# fit model to data
clf.fit(x, y.long())
# print(clf.best_params_)
# clf.fit(x, y.long())
pred = clf.predict_proba(test_x)[:, 1]
metric = metric_used(test_y.cpu().numpy(), pred)
return metric, pred
## Bayesian NN
class BayesianModel(PyroModule):
def __init__(self, model_spec, device='cuda'):
super().__init__()
self.device = device
self.num_features = model_spec['num_features']
mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
self.fc1.weight = PyroSample(
dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))
self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
self.model = torch.nn.Sequential(self.fc1, self.fc2)
self.to(self.device)
def forward(self, x=None, y=None, seq_len=1):
if x is None:
with pyro.plate("x_plate", seq_len):
d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
[self.num_features]).to_event(1)
x = pyro.sample("x", d_)
out = self.model(x)
mu = out.squeeze()
softmax = torch.nn.Softmax(dim=1)
# sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
with pyro.plate("data", out.shape[0]):
# d_ = dist.Normal(mu, sigma)
# obs = pyro.sample("obs", d_, obs=y)
s = softmax(mu)
obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
return x, obs
class BayesianNNClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, num_features, n_layers, embed, lr, device):
self.num_pred_samples = 400
self.num_steps = 400
self.embed = embed
self.n_layers = n_layers
self.lr = lr
self.num_features = num_features
self.device = device
def fit(self, X, y):
model_spec = {'nlayers': 2, 'embed': self.embed, 'num_features': self.num_features}
self.model = BayesianModel(model_spec, device=self.device)
self.guide = AutoDiagonalNormal(self.model).to(self.device)
self.adam = pyro.optim.Adam({"lr": self.lr})
self.svi = SVI(self.model, self.guide, self.adam, loss=Trace_ELBO())
pyro.clear_param_store()
X = X.to(self.device)
y = y.to(self.device)
for epoch in tqdm(range(0, self.num_steps)):
loss = self.svi.step(X, y)
# Return the classifier
return self
def predict(self, X):
X = X.to(self.device)
predictive = Predictive(self.model, guide=self.guide, num_samples=self.num_pred_samples)
preds = predictive(X)['obs']
preds_means = preds.float().mean(axis=0).detach().cpu()
preds_hard = preds_means > 0.5
return preds_hard.long()
def predict_proba(self, X):
X = X.to(self.device)
predictive = Predictive(self.model, guide=self.guide, num_samples=self.num_pred_samples)
preds = predictive(X)['obs']
preds_means = preds.float().mean(axis=0).detach().cpu()
return preds_means
def score(self, X, y):
return super().score(X, y)
param_grid['bayes'] = {'embed': [5, 10, 30, 64], 'lr': [1e-3, 1e-4], 'num_training_steps': [400], 'num_samples_for_prediction': [400]}
def bayes_net_metric(x, y, test_x, test_y, cat_features):
device = x.device
clf = BayesianNNClassifier(x.shape[1], 2, 1, 1e-3, device)
# create a dictionary of all values we want to test for n_neighbors
# use gridsearch to test all values for n_neighbors
clf = GridSearchCV(clf, param_grid['bayes'], cv=5)
# fit model to data
clf.fit(x.cpu(), y.long().cpu())
pred = clf.predict_proba(test_x)
metric = metric_used(test_y.cpu().numpy(), pred.cpu().numpy())
return metric, pred
## GP
param_grid['gp'] = {'params_y_scale': [0.05, 0.1, 0.5, 1.0, 5.0, 10.0],
'params_length_scale': [0.1, 0.5, 1.0, 2.0]}
def gp_metric(x, y, test_x, test_y, cat_features):
import warnings
def warn(*args, **kwargs):
pass
warnings.warn = warn
x, y, test_x, test_y = x.cpu(), y.cpu(), test_x.cpu(), test_y.cpu()
clf = GaussianProcessClassifier()
# create a dictionary of all values we want to test for n_neighbors
params_y_scale = [0.05, 0.1, 0.5, 1.0, 5.0, 10.0]# 0.000001, 0.00001,
params_length_scale = [0.1, 0.5, 1.0, 2.0] # 0.01,
param_grid = {'kernel': [y * RBF(l) for (y, l) in list(itertools.product(params_y_scale, params_length_scale))]}
# use gridsearch to test all values for n_neighbors
clf = GridSearchCV(clf, param_grid, cv=min(CV, x.shape[0]//2))
# fit model to data
clf.fit(x, y.long())
pred = clf.predict_proba(test_x)[:, 1]
metric = metric_used(test_y.cpu().numpy(), pred)
return metric, pred
## Tabnet
# https://github.com/dreamquark-ai/tabnet
# param_grid['tabnet'] = {'n_d': [2, 4], 'n_steps': [2,4,6], 'gamma': [1.3], 'optimizer_params': [{'lr': 2e-2}, {'lr': 2e-1}]}
# #param_grid['tabnet'] = {'n_d': [2], 'n_steps': [2], 'optimizer_params': [{'lr': 2e-2}, {'lr': 2e-1}]}
# def tabnet_metric(x, y, test_x, test_y, cat_features):
# x, y, test_x, test_y = x.cpu().numpy(), y.cpu().numpy(), test_x.cpu().numpy(), test_y.cpu().numpy()
#
# mean_metrics = []
# mean_best_epochs = []
#
# for params in list(ParameterGrid(param_grid['tabnet'])):
# kf = KFold(n_splits=min(5, x.shape[0]//2), random_state=None, shuffle=False)
# metrics = []
# best_epochs = []
# for train_index, test_index in kf.split(x):
# X_train, X_valid, y_train, y_valid = x[train_index], x[test_index], y[train_index], y[test_index]
#
# clf = TabNetClassifier(verbose=True, cat_idxs=cat_features, n_a=params['n_d'], **params)
#
# clf.fit(
# X_train, y_train,
# #eval_set=[(X_valid, y_valid)], patience=15
# )
#
# metric = metric_used(test_y.cpu().numpy(), clf.predict(X_valid))
# metrics += [metric]
# #best_epochs += [clf.best_epoch]
# mean_metrics += [np.array(metrics).mean()]
# #mean_best_epochs += [np.array(best_epochs).mean().astype(int)]
#
# mean_metrics = np.array(mean_metrics)
# #mean_best_epochs = np.array(mean_best_epochs)
# params_used = np.array(list(ParameterGrid(param_grid['tabnet'])))
#
# best_idx = np.argmax(mean_metrics)
# #print(params_used[best_idx])
# clf = TabNetClassifier(cat_idxs=cat_features, **params_used[best_idx])
#
# clf.fit(
# x, y#, max_epochs=mean_best_epochs[best_idx]
# )
#
# pred = 1 - clf.predict_proba(test_x)[:,0]
# metric = metric_used(test_y, pred)
#
# #print(metric, clf.predict(test_x), pred)
#
# return metric, pred
# Catboost
param_grid['catboost'] = {'learning_rate': [0.1, 0.5, 1.0],
'depth': [2, 4, 7],
'l2_leaf_reg': [0.0, 0.5, 1],
'iterations': [10, 40, 70]}
def catboost_metric(x, y, test_x, test_y, categorical_feats):
import warnings
def warn(*args, **kwargs):
pass
warnings.warn = warn
x, y, test_x, test_y = x.numpy(), y.numpy(), test_x.numpy(), test_y.numpy()
def make_pd_from_np(x):
data = pd.DataFrame(x)
for c in categorical_feats:
data.iloc[:, c] = data.iloc[:, c].astype('int')
return data
x = make_pd_from_np(x)
test_x = make_pd_from_np(test_x)
model = CatBoostClassifier(iterations=2,
depth=2,
learning_rate=1,
loss_function='Logloss',
logging_level='Silent')
grid_search_result = model.grid_search(param_grid['catboost'],
X=x,
y=y,
cv=5,
plot=False,
verbose=False) # randomized_search with n_iter
# model.fit(x, y)
pred = model.predict_proba(test_x)[:, 1]
metric = metric_used(test_y, pred)
return metric, pred
# XGBoost
param_grid['xgb'] = {
'min_child_weight': [0.5, 1.0],
'learning_rate': [0.02, 0.2],
#'gamma': [0.1, 0.2, 0.5, 1, 2],
'subsample': [0.5, 0.8],
'max_depth': [1, 2],
'colsample_bytree': [0.8], #0.5,
'eval_metric': ['logloss'],
'n_estimators': [100]
}
def xgb_metric(x, y, test_x, test_y, cat_features):
x, y, test_x, test_y = x.numpy(), y.numpy().astype(int), test_x.numpy(), test_y.numpy().astype(int)
clf = xgb.XGBClassifier(use_label_encoder=False)
# {'num_round': [2,5,10,20], 'max_depth': [1, 2,4,6,8], 'eta': [.1, .01, .001], 'eval_metric': 'logloss'}
# use gridsearch to test all values for n_neighbors
clf = GridSearchCV(clf, param_grid['xgb'], cv=5, n_jobs=4, verbose=2)
# fit model to data
clf.fit(x, y.astype(int))
print(clf.best_params_)
# clf.fit(x, y.long())
pred = clf.predict_proba(test_x)[:, 1]
metrics = ((pred > 0.5) == test_y).astype(float).mean()
return metrics, pred
def get_default_spec(test_datasets, valid_datasets):
bptt = 100
eval_positions = [30] #list(range(6, 42, 2)) # list(range(10, bptt-10, 20)) + [bptt-10]
max_features = max([X.shape[1] for (_, X, _, _) in test_datasets] + [X.shape[1] for (_, X, _, _) in valid_datasets])
max_samples = 20
return bptt, eval_positions, max_features, max_samples
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--method', default='knn', type=str)
parser.add_argument('--did', default=-1, type=int)
parser.add_argument('--overwrite', default=False, type=bool)
args = parser.parse_args()
test_datasets, _ = load_openml_list(test_dids_classification)
valid_datasets, _ = load_openml_list(valid_dids_classification)
selector = 'test'
ds = valid_datasets if selector == 'valid' else test_datasets
if args.did > -1:
ds = ds[args.did:args.did+1]
bptt, eval_positions, max_features, max_samples = get_default_spec(test_datasets, valid_datasets)
if args.method == 'bayes':
clf = bayes_net_metric
device = 'cpu'
elif args.method == 'gp':
clf = gp_metric
device = 'cpu'
elif args.method == 'knn':
clf = knn_metric
device = 'cpu'
elif args.method == 'catboost':
clf = catboost_metric
device = 'cpu'
elif args.method == 'xgb':
# Uses lots of cpu so difficult to time
clf = xgb_metric
device = 'cpu'
elif args.method == 'logistic':
clf = logistic_metric
device = 'cpu'
else:
clf = None
device = 'cpu'
start_time = time.time()
result = evaluate(ds, clf, args.method, bptt, eval_positions, device=device, max_samples=max_samples, overwrite=args.overwrite, save=True)
result['time_spent'] = time.time() - start_time
with open(f'/home/anon/prior-fitting/results/tabular/results_{selector}_{args.method}.npy', 'wb') as f:
np.save(f, result)