From 4cd86886cd13320b7029fcd55cd17ce8cecc7f54 Mon Sep 17 00:00:00 2001 From: avallecam Date: Thu, 22 Oct 2020 13:53:16 -0500 Subject: [PATCH] upload new webpage with clean readme + intro tab --- docs/404.html | 3 + docs/CODE_OF_CONDUCT.html | 3 + docs/CONTRIBUTING.html | 3 + docs/ISSUE_TEMPLATE.html | 3 + docs/LICENSE.html | 3 + docs/SUPPORT.html | 3 + docs/articles/howto-reprex.html | 30 +- .../figure-html/unnamed-chunk-12-1.png | Bin 24179 -> 24141 bytes docs/articles/index.html | 4 + docs/articles/intro.html | 357 ++++++++++++++++ .../figure-html/unnamed-chunk-10-1.png | Bin 0 -> 20502 bytes .../figure-html/unnamed-chunk-14-1.png | Bin 0 -> 26049 bytes docs/authors.html | 3 + docs/index.html | 381 ++---------------- docs/pkgdown.yml | 1 + docs/reference/correct_sero_misclass.html | 3 + .../figures/README-unnamed-chunk-10-1.png | Bin 7704 -> 7554 bytes .../figures/README-unnamed-chunk-13-1.png | Bin 8195 -> 8500 bytes .../figures/README-unnamed-chunk-14-1.png | Bin 8327 -> 8327 bytes .../figures/README-unnamed-chunk-9-1.png | Bin 0 -> 7516 bytes docs/reference/ggplot_prevalence.html | 42 +- docs/reference/index.html | 5 +- docs/reference/rogan_gladen_stderr_unk.html | 3 + .../sample_posterior_r_mcmc_hyperR.html | 3 + .../sample_posterior_r_mcmc_testun.html | 3 + .../serosvy_known_sample_posterior.html | 3 + .../serosvy_unknown_sample_posterior.html | 3 + docs/reference/srvyr_prop_step_01.html | 3 + docs/reference/unite_dotwhiskers.html | 3 + 29 files changed, 487 insertions(+), 378 deletions(-) create mode 100644 docs/articles/intro.html create mode 100644 docs/articles/intro_files/figure-html/unnamed-chunk-10-1.png create mode 100644 docs/articles/intro_files/figure-html/unnamed-chunk-14-1.png create mode 100644 docs/reference/figures/README-unnamed-chunk-9-1.png diff --git a/docs/404.html b/docs/404.html index 44c47c4..8b41041 100644 --- a/docs/404.html +++ b/docs/404.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/CODE_OF_CONDUCT.html b/docs/CODE_OF_CONDUCT.html index 29d507f..3000c62 100644 --- a/docs/CODE_OF_CONDUCT.html +++ b/docs/CODE_OF_CONDUCT.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/CONTRIBUTING.html b/docs/CONTRIBUTING.html index cc56355..c548866 100644 --- a/docs/CONTRIBUTING.html +++ b/docs/CONTRIBUTING.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/ISSUE_TEMPLATE.html b/docs/ISSUE_TEMPLATE.html index 8fec510..7bc1da0 100644 --- a/docs/ISSUE_TEMPLATE.html +++ b/docs/ISSUE_TEMPLATE.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/LICENSE.html b/docs/LICENSE.html index ec784e9..6502413 100644 --- a/docs/LICENSE.html +++ b/docs/LICENSE.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/SUPPORT.html b/docs/SUPPORT.html index b5f4e56..6b3e5cc 100644 --- a/docs/SUPPORT.html +++ b/docs/SUPPORT.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/articles/howto-reprex.html b/docs/articles/howto-reprex.html index 052e8c4..536cdb6 100644 --- a/docs/articles/howto-reprex.html +++ b/docs/articles/howto-reprex.html @@ -56,6 +56,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • @@ -462,7 +465,7 @@

    } toc() -#> 248.79 sec elapsed +#> 573.72 sec elapsed outcome_01_adj <- out %>% mutate(rowname=as.numeric(rowname)) %>% @@ -559,7 +562,7 @@

    83 75.9 (65.3 - 84.6) 78.9 ( 67.5 - 87) -83.132 (65.85 - 95.6) +83.150 (65.89 - 95.5) 0.06 @@ -571,7 +574,7 @@

    20 25.0 ( 8.7 - 49.1) 14.8 ( 3.8 - 44) -0.414 ( 0.28 - 29.9) +0.425 ( 0.28 - 29.9) 0.59 @@ -583,7 +586,7 @@

    23 65.2 (42.7 - 83.6) 44.8 ( 16.0 - 78) -31.518 ( 0.40 - 81.1) +31.506 ( 0.40 - 81.1) 0.38 @@ -693,19 +696,22 @@

    + # theme(axis.text.x = element_text(angle = 0, vjust = 0, hjust=0)) + + scale_y_continuous( + labels = scales::percent_format(accuracy = 1), + breaks = scales::pretty_breaks(n = 5)) + + # coord_flip() + + facet_wrap(denominator~.,scales = "free") + + # facet_grid(denominator~.,scales = "free_y") + + colorspace::scale_color_discrete_qualitative() + + labs(title = "Prevalence of numerators across denominators", + y = "Prevalence",x = "")

    diff --git a/docs/articles/howto-reprex_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/howto-reprex_files/figure-html/unnamed-chunk-12-1.png index 5e59e18ebeb91221100bb29f1c591788919710c3..7a8e8adaeafaed3c74c94ee9ccb17bd44e4fba60 100644 GIT binary patch literal 24141 zcmeHv2|SeD`}fQkkzFYvTarYGkUgnXw#vRsmh5ETM~YG*YqCr$S%+jdOsSBql6{-( zJK5Kn_l%`b&%6HK|NH;E|DW#X{yg_R=RV7IuH}1O=Q`)!Wo3CvGDb281VVZ7!r7}3 z2nhlLA%c(+fj3kBK{5~sO!Ts%+BxtDfrvvOW)N|4h&Z^1Ld?t{X5gL+Nq@q?Aj805 z%pfDfAOr4x48}-CMn)kaA@BhxP56TFXC^KlO1PPsiJO7{$rTR`6%PgXHt?~GjIoR{ zxcp>{kurYZLMsveY?YLPm27R5Y{5NMDY(KIG$R8pP|(lV4{3}<8zWoH*1BaT4k6Sn z9!lsJXo2t-3jUdef_tu6Xq#DXu30X)<3XjiO2LF$34g)1!Qe`@4X&_FO|?x0_g+64 z20vq&wHDBR=$2s6iM0>b3Z@39Rs>h{23O!i#UY_!NNY_J8VSt}%>`FmXf8gqtu3?- zk2GdL8p|O4zy*4WMxtAgEiI|GN~yu%0JEiDznN)^Gj6{+ANR9Vs6ThWWJ zz*kh@@hwQ>7PMar8rcGh650p%mbOswwotRSTyTZ9t+zpF2mIkdQ{dKy$N#Vl=uNfl ztq3M`5Ofn%*^3ANdhz&?krB{id_^$6Efn9DODNu(itnvh`w?^#Gz%&K1@Sc|c9no} zcH3Xjc7#Bf0}1~@L;8N2LLh9Ai)Urk+~UU2AxM^T_vZOqGCB!NZCLfo$KKou%hx^) z8O`0TBph|TptnIid5_D%FS{vqGEy7g=*|b7k_=M1E@V6=A}xOWl1>)sqjaU{Q$-db zr@~x0$2(;*BqWL^#%jlF(WSQiG3F&*A!mzAU0nNH%m+NPB_t$bU=YY@`y*N8plhKV zqz6D}VE@|tGvXDaZ{6QiOG^_QeCDcq-`iza=ub~}zIw9|g42ZNy$+7A?41%z7k3hY zKzQZUpwW_ZpL8^s@+-a5k9p3V$E~71@Vz6eptb*Y4UTZScN|;E(WP5%Sw^<-PW*n! z$#T>O{9YsCm!zkD3cyYmo~4=WVHL5%jka99u99{==NhpWYIM~{qPg+Yg_W}-Vq|XY zd#E`eFBR0Fv7O}}I;ENEgSAg^)>;og)c7HwY>wSzZc9J=O{P{DHJJ1;u=Yp!VkYnt zi)(f7w{KZWf5mVfQ_0S8w=$3x@{RKiqDJgSJw+Ff#QSoTjWVBCi6yzrqDG5Q$z%jG zyEn@Fy=$X­9Y`^*Td+JsK}4f7UDzkxCH5FfPj`0{LBq=IjWGkcSES{c&&)olFG z+xc=MO6x?^$BASTi4hH`(Znu%5ckI+w3ae^+-s+lcDffCE=hOC!;oH8-{-#mh%G7f zJ4hO=N@lJgXEkp#(fob!eLZV#nNSm-W9|sKX*gvWk2q2Q2H_0~Wy!P{a(NOkxsYRa zccz}TwX0gM>0~-mvTddJ{q$H}hp7!myO+qw&`Rc`8>&&A#>cB!cc)K$A|ACiJByhg zHq@8y80>p=#_4&tTETUyq`MuQDw-1Z_0dcfepsjZhefY&tplx{ce>*4m}lrWwq@`~ z*g%UmT30rK#xi**N@(ReML#)@f6EYOVdWB^Z_w`M*%X+uj zamGn+^GtoDjv2WMmBDcQW~CmsNve1J&b)omtx;e@l?U2(RW2Rv5NjasJ#GK#(uvep z*)CmkX76Gpr{;$zt8=OXawS+kMz+cA*LmMija26({8hU;uxgfl(eV7!ija+rDHb5=eyx(M7+o1 za6)objr@3Dm0t}7Sw5~|x&Q4A^}wD9k?tY-=gg4?k-AA8%jc|*TUc6YNUY8j`A0f7 ziXV*A;4ai1Ms?(&FXi@E&8PYdUKkC$KJ@(yJ?JBeh7;8_I7I8#V;JuH$y-Us^*dh2 z_*6`1voc8`MIOzz434V|^EuQ94)N*cq(qzZ*tU+>XV}+2bJ-vJ^Jo94+K_T;i0EM~ z&MW}#RnVfG+QG{G;f5LuN~NYvn1U`V$7E#Bl2o3rOlG5jee1}uU2-X)RrOR|OP^s( zHO@)gGn(@I(K{8 zMr`rew@nRQSAEAy#&T?*+B%6g@iD!A#vgGUDzU*Ma@J6pjxighqFr7BBM|kjC$`~^ zO_LVL=C=_jdhBXyrB=4mCn8WkTgr9O10PpV6<|3?ZmNLkK{rnC=73<@KhRCy zsjD0J7PDb(yMFV?tT5WFu=D%};c{P`3~tG6nRoWf8*fT!`?l_99~s46@8v4jQ<1u1 za(h^F8m-b#sNF3Q)=^JLH-3FLozt8Lw_-PA+No>Be`?H`(i#xEZceHm^zeu6l@Q?^VK#YY!Pj z4hYM8)`ZNOXSy_s+k4mZVEuAJ>`>lv+Gv%5R#U5elWUW9?Hf%d+Q4a$~PSvA`U-EZ8kcIo8gZa2oRx9w%at_^w5T{?STmqE+U7cE0ymjY@O3>R7_RzC^_ zBRWh6=q8(Qe;?OYtrNyJ5RdMEuKvv@GO*@^M!5<;5T)i?>|(AzigNaW=J~c5E@S7; zE6XAQO>>Ll5OrK&SXFGw7&({JB8BXq;`76?Vo5~)nYALt-bHN z65(AMt?1d0$y3@d0+(DrADkaI8bjr<#%0L_yTmEYG<7bUn9wxFWF2Iz-9OP zIgUHMzT5L{l+H^aRN4Og+{4vtzGIzZVpT;PXnEI`)0EMB*NMo`yL-V&8a_QWBcdoY zjjjGP7Q?QiG>&;wW|mfUS@eBbtkZqR#Oz%jlrNuLG2qNv$&evQxegq@+&nQ`kw@S>v&MmGn|DlWGHe>M39hu9fL}!+qyqB zJS+bs#JlZ7yH`hizm-w?DmH&PQFNcFE08beXx96ylU<6d$w#9{ph!7Fo3c+4ZA8~q zmO53u>bS9umr8TR0ujr1>|61+k+EGe zGHM@OBqwsBN25Fm?YwOg&gV2AOBl-;cKcyI%nw*_b&QW|ov#E*=_Y5~T#DpJ3hZhe z!=E6Vlm>lQF4em8Jum`ZbU(t$LVU%=?12; zueOe3g62h4${!r02}(Qe3v3qzg5W0H@50vZkpIB@X)UPC?x)mL`w?PdNPkXk82N%e z#567zab1(bsDsUj1Wu8;hxCAvGEF8CY?sz_Gdb}4tiasd}=?LA=bg8vgEphx=?laIaf$#pv zy8L2zjJm{;7RnEUHI|(rsgeN2CyK2)<8WhS=7{xAELCy63hK*0lVmLLq4+Xn;avnh z3_5b{k$)dasoT$q5?yo_{{2Bhe|YIQ-j~j~j*d*=zkOUPtalv_H?z~Ayi)*o{)t)* zOdMFM{aCt6VpzEF0{>JxRb)BQn$z-`PnTZt64UC4x?Q79u>MpH7-2Ux&Ez3A?BH23 zE!+&(NWz4xhxwap6off4ok~O(t1-7scvTu$E)`{$ei>u!n&o^w{KAzFS2Lw4Gbf*` zB(`eSn7C3obg9rQ3Afylu~fsl+Lv8dCd&jr7^_86H7W;}8I99qU>o;oE} zp>L#gmcMiLon6d3mRZA&hL}uHWd(mU3jdT5K2>|plQPdzHO@{^7tq4}C)a10pT0$| z=wXsltq}IbaQ+5*KiWxSHf+UNDJ^CGPRu$b1tnqN)`jRxpONOqm?yJFz*=S3440Wt!|?}?$zv@XpsP*Xxk4Vj(~TB+z- zpvJW|7GxJH4f(3pu_6$4Q24><*CbW3GroWYfN0!%fWKnLNa=YsePtpf_B@sZEnhhOT{D>l1BT5UdKM921t7mF3? zzF}~*X}BSZ(Ua!ya6aCs+csjI1vl&x2lKec z>^jr6IhE%z&hjg z4;4#|ReE=(KRFdPPfvWJ#a;f7@l^3Dr%M>>-H{R64U5^KmQ9=7ks|}Li&^zq`%jTD#}C_ zsLJ>6U;5AY3RO%F;3U)7eX)x{Qmf-ewI=hE3nE1;djo6H+ zuew}a8oYa$zj#79GfZEtB~LehX~qmZ^{9nB4j@+Ut(o`bQVM9N4!Fd5TwZ@ zVQvjYtd;TjztZDL&5m&Ym~W18SX5cTnN_QzfyMrCN#(Q@BYkKDeUUrfy%bf(|gvL_Y3p1A+*d2`u^*0s%#dx6s zhzXKw>FN(31eZ13k2tmjA7vo!SQ*bn^9*5Dl8QPVxowOwJzvB*~8@u{(Dv#%e#U z!SbG$9oYTr$5Qa4YfycWmxP^J_Gw2}`&>3`wd@-2pF)Y8JEzKN%5{+#YEHF9ivCB> zyG{MtT%C8waG2u$nA37Q1@fNBGw!sV;vRN(f9%<-JBwa~Ly2G-WSgS=-+#P!TUKkU zauEC>@^W;2SZn&@@G}8g`SC3(CQR*dkf7r_{{c0?EphP}>8bzn&ry3OzoO{Q{d}*# z+}~T(y8ZN^?xp2spoRrj;TY#?z695F5K&lR5SEE=H1f`t8q9P zFt>INNwKc0GY`*%2=al`A8lzA?D8rr&Xvo$#1rk^*}txN%H*Hr`^q#Yve~Vfh*L6z z(F&0*^`={5r$y)Wp`tIIdNLcqDJ*3%EKWCiR!(DLvcKD0;8%y0xa4sdIU2OKldMdY z3_+0X+(GmnO@3m;%w(H3D2xnN8}}*$8e41ELdng7 zE~##ORAsP}Dj5uudaIt-FJlsk^pwi8nwWz29b1~8@T5%Rh(>QG4<9zeQR2nZq}i&r zxr~?ot>2U2L7-kAqLB(yexO`PoBbo=5ATD=iKUXcp`u1R6>}SC20cWAnQGr$d+v+J zG3@%I2O5&Z9cb?SZcJ?*Z5GJ`M6&VeS|vbo&lA6u5cAoUvVIP8Dyl7$24@hkTOZ8`oQs6MaZ>$Gr+l%uac0>%)mC_B9gWGbHq zk)DG7`^`G6`!_ZI!#Lp{>B699&~vvR8QzXJ&8_D82VZr6zQ5d1)iJV6G@@_C&GAT< zW!ISv>w9sRx}qE=@Rfr?MzLk5WU)HBV98~6X$kkEk#aeRWr_exp#jt|ZN@b+=G zsQ$%NX<|rGo5vdFO#dKB(8XWQZ>jkVCQ#Sewdry0bmC1r(;xoEuZbQYo;}>a=s<2B z-$qae4Ig%Fp)Ij-(nWLQ(Jgx>E9Z;==96REgg*>wCw4if;fSHG%CfF@WErP2ryai#1!RBOaI3;(_l46;$~uUX zR<+Z4jX4<)T691YZc-ko-9CY@w2rIe=U&gAJnWAqX^u-WqdU2<>6(E$>S-ot3}XkN zzAt=OCcnl%cdoJ%+P!}sS{AcK5#A$pTbxa(vn&hSPQ0_2-J$|0U**mlGSF2OWkfPbo~bBiwpK6bC|F*&yjxdg0G)@K#^M|v1|`ax`i*JBR*lp!J)5Vs>7B5*>4mH zFn6M#za7t5b$d<3`%3960H=bl55bfXzf>B)_kLsJQHAJh9)-?bO*is3Rs7$J@29tK zf!bE)ys@91sEIJi3^jp(onfVCnyo?EaA3xp4oUZsM-^-3!6Y#NPG$?1jh*n}Es6bfK|_4SorLuW=YJAC}0G z=o@aP_c-{S)5y{I7qpKE^C1|43p38WZ=xwuD!2!?^qL#mm1Z!yUo?(oa+E$#B^T8x zRoK9EkMr=7_{|oDUFutvU729gQ{7tTJ()ug&3cE?*#P6+_e%aUya$MpD_D+WGPiU{kIbrw{7JHLFr}syc`@$n;Vto|~{W@Zs%z20-RBA1pIkPKQDj-{G?!VOrEba-X8+ps zr?h^8d#$vZT;078Q+d5hx9uP5+B;cmGSysXBRz%gF^pAYG1O)K#qL{aA4m(8d90Wa z3zC;OOb6!CHI>sNtxx{SY8SVCv4WL8G{Um0D17u%!Bx6-eOVYQQflaY!! z^Bnc3m8KwXPRZMEzgj0wv&Z{Sy#XS_z(d=nNk-}3GPtS7&c9mT|E$X$)~VeiNv|Lv zLR*fmG`VRp{hnT06X)q}qr3NSy}jndH^^$MY}q(q_*c~?fD;H%F)USUo&TEDsnzp) zz5u@OO;3NmFokNg8;`Iv$k#Z;e%6yRyuPe^$YLBhn zMOum#`A9ZZ4_8+!uMDc|Nt;LY1dDK446fQss6Z`!%3y?dVqwn!DXfv; zSgiR8IYss1GJF}uIwft#GrHngZ0HlqiU>jK99C-QwNUbgKSIBMvUE93z4yAyrJw`^ zzJ_^um7~kErsQ=XMVD2^Q)!#dNST$CRrS@lQnSe8P*DZF1$Xm%j(xmP{Gv|Yk(V1b z3V>|s%#Mz$d7_FcdE?8BV;bY>yk3_ncC=+bR7RbIEH-8qW5a&SWYxIp?KJhBq`qgO zk$R%YeEB`H#EjC~N9)OAxSeL#vs}rdU??l_+15G}OT}o3=BN4XhYglQh54 zZCk+H&EJ!`XtEyrf4FX{3o;QSv{xk_2J1nalJ2@Ht4PJt&zmI$k4aullJWYolDT*z zX-H7CUO!^0q}`y~ivfAJENTS5(0F98!(pJr6=i`J*EElxq7UkBolsVC%`fb>l8M(R z8h1t@trtj7Gk`3b#z)Mw_VQoqbu!0Vn0VeL;3gyDgAwLDuSLb*esC99lEjuj5vo%> z7jp=BbF|Q|tQSx13SqYAW#`2)qzAsgSvY!Q*-{OY6I%!q;j&dZ!GS8=vpiFWYeD(i ze%o(fl{eQXo-=TL)Z#+A0e>BlawzcCZXu|vDK9M7hv!uv9gITM+_P|Govd0;B=Wj? zY3WXEo|_sbA`|@zne#+o5io?mEW#aKl>bX=57CCC!sjk}Wu0 ze%pqWQgDx}_7vlVOsN;hOS5W=9^HA% zy$-p60;=~<9~Qy#L>h$XsK}+1q@`KastS=Yt_(V{yq?-EB1RO@cTknU(1#tkkElAxwOjw{R4~uGIxB0s- ziwB_cyVk7Gkwe(NCQs>9N`+sLOB#xIFC+OUD|sD;>(%WjC~oxs2O~PJlvu#>cK|?} zS-?GPg-`o2-zdE22}v=g6~wY#cJqRWFO|)O(}Z|TStg>+iXwNj?nf+JK(s)4*@4Ep zn?G%XiH?%N_7DGJ?BJsUE@S{Rw(jtnA5gt7^kVr3gLf8VO21Ix*!&MLA?c~_s`-&{ za>E77n!1cJk(a{h=I7Q~c^mS`lGWPFyw|}R&hC`nf4cm~F!5GkOL_pxMYh#Tabpbg zzYxzC43_c8x4tJVC@K?g4Fb3kdllyn&@__XlZG`ywwC=wyn@rL{@7LLvotco2$R}Z zpU7rJ$+p#JQN)y^TE1!`rG(tAy|b^9{aFXRSSUtv&M`K`Yht14NO*ZuBgy_f-taW& z);>HSU3h0QrMG$^U|xi)4rOI^=6MK07_kKh1LQUFxZvrC`JoQou57|HbPLdI( zUB?eEk!lfbgPjbw)hUbL!1zq7+0uHyIOKcCZfU9PE<&a=PIC1cCsrjP{xMX0ME1fA zZRRfEX#IjFe@99?2~tbET2|9pd-$QSt?8Ka#So1{g(v^*y(c@Vs9Z-NuXS}!pbf} z#DfRbsiV$OEvuBMyReMuOG?a{wR(ng1sk5wzw`n-kBnDj@wUY#)%mWB_P(#vbnTX2 z8e1BvsqCGWnr^+G2fardRNo{6X_FWaR`p1By(KCb$y z7oD%PT;Fkh7Pf62IPmazcQ@_iPh?Xup4EZ!lrW$f%ZDvZFe`(cdIhvZe^&`&1m*gG zFCO_M5FcqNte~a>vo0xVilw`0BwLjH^PJu%xL$ml8I1<4*JB`n4u8mqb&n92lHfl3 z=tULTHm+f1tH3$9iSv-b(~|u=J|T!@(Y0q6vFNQmnqP3E<61(h7xk-*`N3YeiGvuEY=PLx~-`8ohq;q&@oE>eT9DVTI- zf2s87D7HX3Cr$DDu?z+v%a?8{K}hqBmGO<#*~nn>h3^l>Rgg#*c>C}JP}`e_KhJqk zkmsLtYjMt%8ubj%_V_x@@lt7BQlB1ff+G;erx#r#S?pCXNiy+{Og;B!4(zu_!#sDp zo8Ro$8g>WR;R4-cx7+k(`F-fu^po;r&CPf9VWDR;laFfV?;0h|U#%Bg>+1=qrj)sa zf%QY7KsK!KEyVR`%o*xt|1iD15Gm}(!3URf?Sc)59^NW(T^h3%$mYPdh=H^%$9FF{ z(#z=`#N;q$KkE{-+r(}FTuUXvj$IF=tPRlZ#Hdsu(kHc0e*T@w)s6-$V!bZ&83G$< zx{kT{w9-$S*D132Uf1dRAyM)$7Xj*HDB7i02QijxFEKzLBA{27Gngy|Bd~53(fb5K zGkNQ+dGedGFxJJS^TB3eDJg~$7Drw=9eI0`xZO)?NamBhTW)%?9c|#FD__R4nl;L- zWC12AQzkvNZt4i5f*C|KO4ii(OwC@mYtF8dX-|7AE=@o4oz`9|YdUYWZIHA%`$9A= zG`3`xsedA%Dw{#N(JxfwTwpwn{pcPou(Zcna0CKR3(JbhbV-qT%o2eH!WC0*QS%Vk z$IQL3V0{=lY;Jv;)CI-qXQ*rL4fG7(qiHAM-2*>Z1m6#mjxJ{GhCow4ObZ0yvuDPC zdPehkd)we50pQtD1M%cjDYoItla{Ok(I(wHlxS~ zN*}I-bQ%Z&2YJWPH7Xw?xWdV;is#zcK!oUz536s_>Igq7KR8dzAMm%qcu+2^qSPF% zA0`Azw-=TeqE8iMtJCqfryH=M)%4uI`V{N>b^tBz+`JoF&gVxA^}HNr1v`y7_LJhh zH~`n5-i1huIvrawDas7+c1so58GyX{moDG)rJG4YX(m0#dl^ zpr8}`8W;wqx?+!SWHkNdn+3R+HB0kJH(Iy6{43P&ThogQw}m5jNQ4$=4{VOYU;1dZ z5f2Ag+#e3IlR8?sxfJ!tO+>^v+Q?wM%kbtqr<6g{p(PXpd=v^rkpp(4g=*F@Bq*{l z71QPyVkHh^&FGv^V5y9dWVyyu8|8k+WPVC|-zwbX=?N3@&#Kk7L(CBM-*qR;nC;xY&DTfyP{ix@I7&N=a zgKs4?^4ql)g;7=eiUZ8}2YGN;z5wi#jdVf5U5U4?Ts<6rPKX3=*9V!G)SdrbTaxyQShp!k3y4xkSrU2@+BuN2nPKz&?DUf zwdurq_-rbG@OLVsJ@C;`Wso(yT@S?H5+OoaPD>wP*@dR~b0Q7)mZM~j-%#i9&rI>t z)WE!Y5V-5w@pCJKnmd(H(+B_AMQh4b#y_H5A3}WY?3l&oH(6Q6%AD-jH{_BrdacD^ zgHR;iz`&V9==L8HgbjN5P@OU^0Fflq9``-1uJkW+eC_&mA0pqW^lt_#=xYY!TK79* zB^_3R9G?8_U#?R=0yN5G{eX;*%grAHJj82Q=UV{Mw@kZKzoGP}qH{oVZPd@7i46P= zI&CozWFGveZ{m+kb$6%F* zRDJ6DKoSTSO5$v}zYHXT7!wIcG*YoD#3QdqI`at1>|t7ou;6&wnBu3z=XzG9+-#wnPJU(+-r4wBhRWqFkY$HMeto z{-}h_sH{C2VddY*H?rGpZni>20%jY)F<&d&Ry(7-SRXHsTNH{;mA>g}W8Up~plpc{ z-`HX7c>0-d3DJk^bI(c5HZdcC{>>slTTzosec>ccNzDoP|oImtKj_D5dA;g}~TI z?(%_K3F5Gffm=8i-@PvCuRQow%(K1IO!)?>`!o8^kb+>g|}f@ts-a5`E4Ok$_+eM zf{?LIkXvY8;wszoO96|4+5QJ>4I@}<$YHQm!2_1D>$J?$gqN*g%!o+hN5ay>y8ix| z$K62O#r``r@S+}uTHKW+y~lmG6tpW9>9>IE_YnE=8#8_EN*sMMf|i2DzSHWL#zxO8 zku3BoUn%}lM8yjNj%%G&mL%k5e;1g8yW6?TqJcU{`X7>2~La(8U>?o^}3f4w3s{JS zK$u<<&IRZpCB*Xtn>`V0`Of~V+sjr=BSOaM(sg}eFJ|UbAE<>xQ@8XtPBZq9^6B|>1J#kuA#VQqIO(xi~2UO4zSBTtjLDW1PQ2(UZj zo5hLkzQ3>k4bZ_JwVlp|2H4nkA?f4k?P%y<-o?Y2 z2$?-~pU#i&sjgaGR^WTAybsN*j~DhwNU>p^{SfNF9R(cV&$7+?`u~Xn|8FK~KZ4RP ztu%^|wfaj+*LdVOB+FFd!;;n7R*W6|C@{}`<14#7*wEN4>$C*Ifm@vO%u67oG&nPc z*p5QM_Oh=-ZP4xhAYixW^?5|wePzJuXOrwm{@~!d%3W03fjr<$n)nhBwcF~&0G41A z_m)^wH((p5%vB75sZ0U~Lpi{1pV83Zbq9WM-6;jRd|N-*Djol+NA~ZI62f2V|3Y5* zO;M2bgYtQGG^5zQsYHwr*_e%e5go+CKd#B|ikg_Gr~75sHv>|cm!fDVb4AHDPNTB3}KiQhw}k+H_?ubC9r9`?2NX8eyyf$wFm7$cOAK+9LS$ zO*}4)JW=%=ze1C54It`sn@~DnzpKde#TVOuB~lGQHiVw7b=O6p-QT=LP^Ywo>cB)a z19oQ8{xw!%O6-;C{Bh=HkrcMSsC%w*uAxXi&x0fDFJ5sNCx{`al$|(iR1eKa>}ejM z{P-K$ZJENole#&+zgJiN7F9?m-_)65IMEQ+5nGwd2-C0ok^Zz@gjiw^Uq1AV`=dKtHo* zV;O6|vQA*Q6Ae({_V?dzLI}w-f4qzmYKf&_%*3^?law-#a zU>o1*OY-4vYc<8b+^ESnb}EXQ@7lyS&t}G~X2}8*%W;MS9v(?xFWtU9;!i#RTHQiO zy!^fn6ajwq@BWNZuCeimBuGcL=iC!>S7rIN&4-Z}25#)3h5=+U9(H*>+yPLia_$&< z(zIzlSIA1KuhZjG{xc8}{0(2XSS3&xY)Y~V?Gny@Ki1%wtug(f2HxIY(4@Pz)pFet z*lHH48xqxE;pg)HDM&uS_ z+BYiFXEbtY`gYi`cLR}a36CuS?eol6a;}x$t|Oy_fLq|f7|af$b(y2)t{DMqp>P7k zBN)gUa6kw{Dtks`oKDvmi;n=wnX5c8h0@$-LQ{ z^nlY%*$(aYQ3N(PFTTN0YlwhN6Lalx(K&JR6`Rkt4jvA_5()+4C<&8E=!4A)T4v2(=YIJk0CO-9)`|VL z(n*L0tnR_Ka)~*c5j+n53s(c=kno<37aj-O`YIPIa(Hvmhv3hEQn}X-QNejxw^k(~ zu+Q|L;LL9m^`9Jf{kx<8i|FK{5!Cl^0zp|kj$WRR))R<7b_5ExsjnMH;QA22=u?ty zt46?I_}_rU{}EFYXi8k1^+=i78{|EFd1Sc|pb;(Pnk z!M3a_0V+ab0@cvtwMC~pESV(4?niEm)$1?3dq~($?vL$t-t<)HdSht%6DY8fR%_jfIeGXAMgJw&pT34`{sNnbv!^}N)pe2F7jp!*7Cs=n1-pjV-!dm3f&PB` zr}%=hTSJT#@2>(~7aCi{x7C};V^0QyCRH}r>i8ISI?<0A!bbtjJ#21AzXgaOl8^r1 z0l$CMED_{x9Hh^zOm{4A5cD7&e3a%$%RYM+&yjYZcdzhauf06kk-D)4q1q!k*I2No zxWkDFzTdeA2+l*`Jb*Rpt-OD8M1=kL1QN#aZqkHs4gi5aPHAttcZA~!)*!{3O==QO zgIHq<_IBzsIox062Ujk%++W+hy8f{iDXH6)m!s!4j&~rmkhWJ@mSp2h2mq+ygiW0P zA3vKoLy_$*$Aaj`HBcc2$1;lZ4bkoBk}iCD=wPblK9O5AMNveXL_3TWDF11^77e&& z3U*egAIK=tN0*fN<~x^pd4Z!Pu;pO+C`J9k>}5R$Zco~^{j$A#`%f7>m~8^bbfodF zugZRPxh7uhdCsDvg9o(+*;*qgbci>%IBy)YkxKTr)!3UYSMVEqxbfd6R<-%p zc3ObGe}dUu3d*C{a*#!1D^Uiw1n}H6Cs;a$b9ev=*LP%BcO@QnufqI3Y2wF0xV1Q@ zp&$osP`18xgHYj$&84vI6^fIAgExz9VjmMtBdPwmx@)t`2s;;C4l}m@dn@HY)9;cU ziS|{HUZ5|vMhHPx)|nXuhul8@te1!aQ^*t%n8{;+Qr)fAMoFuf;%-KJ6F|u*TKhBG z`k~=-pzO*><9Yv8|IW9gT1=xvx3mhtEIV!kYsR~84Bhq@+e_8tG~`+Z}VInQn_ z9H8s3(?J3oh>J;o^^sSMFvtj>t@K$x(B=B0WyIcMQ={J}aIBy1kkt#uvb$X{lX1r> zF^@}?E>1=H?L4yN&zV|3@?pP)>Yl$;?_gjPwC&uFt!GO7(}6Q!M=8;uzdx~&a_xZ8 z#r@zcu|o%WA&xhtNfh4P-j_)uSOH5R-DAX+PJSqvpqu`64`IB-6c7jv6P$2|{!iTf zstG5(ROd4n2@Je1(*?`)rQbiii^gaB78{mIFGk}hWxi^aN4UGC=8JhI3li1E0}ffj zjlQZ4AUj5rDJV!|Z`BovQg1wAdI@Uip5tEGsU7qtJ_UbQ>~ZpelVS0QoFqpo7;dWZ z;nM7Qbe`H;L3+_A(WCKw&8hfIFSpdi>$}u$AtE37BT#5H&Cws}cs+Aw)kLRH{NIy~ zMwl5vo=h)z)^rIz-3w29a1idb8ZxpAhy5(`Rl7WbyMEla!*a=Pt_z$9aHZH@)VAPT z_fzo@-{v^1SRshwbY;>?E=3AH!4IK6@iM1@WQqs8@D<;tfv2u0+=TeZW5FY1!@;`o zek3lvANR$-;HwP`x7qu?V~M|}OamV4!0Yr7q*q2hx`V)Xjis1T+jU&lDUUc&^pd5> zYF^pm0X+^mRH;iGEkuvCANicBhb5vexqWAFs=!g_qgwtGlAlHQ0=%| zohVOj(YJuyqkPHYmJLw9$~#uv4Ey>Cp5kIl%mmmO>A6eLES z{x+Dq{z0)NPWj2$p}7X*YR1$??c;mjm9E?w?h}p7GjS)7;vNWLG4)ftZ4^&b%vNx@ zA3KB4e8y=s@Mfa2^rY*dj)OX+-(XN4j=fM#(b&$*y5$iTE*Fy@`o0&&?t3h(AvZ0H zTsiUeI|Qb2{s`DxSTaSel=>31EY!wnR(tupEPtKF^&HKr#+N=qqJg+XUUCAT(PlCP z-Sl`tPTK7hJ=*GRGC_pHkK40O8pnxfP}}VT=Nl#Y7O3NDED|ErN~Bx+>li3axUlt} zPEIMO=%LY`-&S6LCL9YDK6`&q)T*inLuLd81px&G$tp=QNY0~x zh$NAm2a%j}X10f*fPQ!P|Lk}7zt7%_=RMCmGkyA0S65g4s=BJ5{-Y>+l#rGX0)ZTr zyL$O11cHZvK(HYASm2vEPajDL1Sa^;b(JgNBLu<$fv7?_I3OJ0j)17DLR7&$36dH{ zi}@3wrPZVr5up_UcPCoSP|zAQ#WctKsd8{2FgI0I4ps0!NgN0S2Ljxi`S|$2lOiIT zBAVcG644A5aROI?0_M+5LE(vlnVEtaxW_9zsZiafK$Qc6>4^h@Ap!J<`9pwzst9mT zQbjbYCMBsRfje3g&?Evb(6N)IQ>bQWfo5n2=+sQ%38q)f-xISZ;EFeUQehS!Zx#>k z{Z1mZPMRXyPZT&6bRak&2tfVz`!H`nBq5T()r?3&Bbu8L&FCk9%IzMvdy0P&U-6`( z|49WpRFgJTQzX<0T;ReG9Ubvz3h__C1>RN>U(p}mUlHGrPEv&=sd6MCz@?f5 zUI56)yafC;CpCi$orF$GLZb_uL<*cV3qrx=R1gZfbSfz5DCp>@c%o48#H=D7T$nB^ z`ui*T(G}>53N*SI!O@IRZB7CgqIst~Oqbvf4SEH)W;D7ZRI{VNsiPpY19XR>5!^fa z?|JpdoAp;b!4L?@1YP!{!M}bqdVG8wP>im40(wU`Ct>>Nk4N`cZ2t(z#Jm;_+M>~y z&aHC+!6C4^s$m0xFnDABg9Z%F8bTn<5V^}zDh?5oB>~Z=s~k~_X>JIkx=NaC5zhWs z0YpuJP^o5?0@h5646TU`;P@|Xxl5vn?FMvLoL%ybh2ia3gl*)wz#n@ZZK%YG_ERZ z+Kt?YK-3?-hegeN8RyV2N1a}7`7qH)w+b(%F2cUXEQ^%$J_h;Dnv0Mn+0>^urnYGtd{S>%4=xjrpk6f==>)613mT68S46E7ROrFZDBG&JQyyb_9+Kyc5|_DWQ_0@oi-BI{UTrZ zF829V9@xdg%ak**i&}Dg&k#Y~f%wO)HbX%yC zYgnlbvVXJ?IYiKBnziY_T0PRAUaD1Umi;c(um&fsvw?Bz-az-VS%6Zo+dJzMZ5k<+ zN~P^9^|qZwcQTv=ns~13JU*xVbxzH`Y1*an<&PCz&ID3L6;0JN-y5n$s+Zx_0i~w* z)~(PAdXpEIu&dY~XT_D~tmnc_#$1LHm&5u)O+$pc79W48_u8U}RHTMNhOS&CY0tLR zvXgdLxhH;kEpd6mGCnOiyfq*y)&0THy?GnBMi+itw1TsUWE!hxNL-dW*1YVcfuh?` z(Qq2lnaDA<;Q&D=w>PAz?}bz?Ld)3=oT~>~mbw=PaX+vLO}Y+PBo-}&=E8@%nr3RV zYeX<_XV-^cNg$VjAXcAp>f1;+v{-k1k4&c995AvMaTT;J*16^?7U@U1WL6JHb8c-NHG89LZfs)^lgY=}ByCFV`d=al=4lIy)I z1Mtc5gwtrZ`-Swwle{?;98^kM!t>qELw83DH|2VM+6U)M#tSE?+q>3&GK^XO;;Y)0 zym14bc_%k%u*NyQzKy9Mgxgu5i32sJHvPKkogo8pnVxTg))ONY5mk!_`)SI|%-FE&DX8fNZRv~ebuiADB(OY$9I+-oY0}NTuiBubrk&SQrPE(1J;^CBxV5&R zGI}c}pp6YRWweIvQrfE+)5CP8LSKb3Rk5y%f8ls$=G_6ZHHJL*zN}V7tFZAgFi(Jx z+PQ{~K|N{(w5^C^$YS%%qkj}}x^){zF_av8*YJp6yiH9n)=a=stBJgMIJ}RaQ^Hh& zPQjw#gI1MHPuNnxn2du%ruBg99j(Yx^8w>}BV26l&7|`iMM(L@j9(Ltz4ZVFhv;r58H zmI`^J_ncj;Tn(CTE^!vMj1~xmyj>U6XzIKhpxKlD`CQi${z|54!T6%$J>#Tr%1=Zi z0|k=03#TRl|L@YwHf&H$+qX6qwOUxwj*oTRgil6I7SyP%SEbss1-tSuJpOP3)vr6g zJz^uk`&#lQXFdO}s-f2rH|!MBqtfyytt5x7)A8e0ECZUn6YHk%{@*q`E+nnfcSUQfb3YZ74Fw-lIudts%J3Z25kAPO*6E zc_5d`Z`ocdK#QDF7l6Lvp?V=J)pmp^e`C=)Aj9Gx_nW;z8oZn+d+8pV7vHn0eN15X z4f60Lv1H*eGq+e#&z!8*sPS-J=yHmygL56-*CbbwCN8Z+gc92`2*f7H3o*G^I56Bw z-&Y&zhY(eb>Yz8meL5PbSRiT^sfBbkW9p28K%+7GfbwE2BHg}}dssXyiZRuqU2Hit zeWO}WVgSEg$6f{s7ZgqtY!NXVE5I!-M)X{|Am5q#piJ0nY-QFRT{-99wv^)AlT*)y z8saW8o9^jFvYX^}xuXm)VdXd>AuJK4f%sFH7o*cLY4fP{C z15P~L+vk{fd;UT`6PXK366MpQ7GDc#B7g1YmE)Rh)$n1nWmbRTPdAbLvt1kM~F^x{K&YVg)@CLmOSF2>mB!Yog%n%{oK^m>5o7n%PX;6 zwxto<5hf8u^08Q~^k`G9m{5+jjnNaCpsuX@Wi-jWDt=bz(>*^TE*$eN3KeZC`iCuD zkrKS3bFxf%Fv#fn$P1%8=RD0Ou@l_;E}Z^h)jHJ?l~v4FCNVuXN}ZSvpS+dK>hi1(o4v zzg9XS6G(v~zCwBiHH2&*@Uk$oE&e(Ca%&OsdgyWS(g)YPcipA|g$$jsgF*GjH~9$j zGry;&G%%wqPDCt~=?tzdtF8OAKO2r53Y>hfoRUKqF;wW3_cNs@t3-yO!6k9+0a(yI zQwA`JNFEr3)8isEfFvQ$`9jqCElI(|EytEeTkG7-=EjRxPry5Rou&Gw#QZZXgD9e} zPirSKsS1T75{RM-oZKm)aH7Vptv1y(Hh$qgwTfF}2@O;c3tNTO@U~6@MKhfqecQIF zj$V~K<1|LSzG%Y`yWAp_`PFSRgY*21KA(n%=|q%CJ^Wjtcec}`b#m^~wvro_8oBNQ zvE^-yaDi`G)$G%+os}3R+;BIa!5EoJUF#)!T?L?U!bTrpUkEJ2l5re-lp)Q)g5jzYVjtl-iQf)|VsYZYa9m#K-4vQ62hWy$qU?({ zhlP)G#^{e7S<(0Cg{{ail#RdZiZ6Cw!j9aUFf%@i{_L*hK2s7Dj5v)iq#7))zV*h% zbx9eGvh_*Wras5UAbhSQD|#!2#BHt1SaNfCuq)bqniCd;5Ihxrr%4C zo+M;L05)aVE8bJy8nZE6pUq0|ko<|B5Nu#U6hT2*Cgq)Yu+@2tYp-@@2uOH{K(pAO#rtRwQmXl&$QSZgJzQGJ{9ByQ@uI$_0IUFaG-Ni-H;d(2vLkr?^X zR)^B&)Xznd8Y$-K=$tmI8iC5y&)F1UUOMzbH=d%sBga)G(UbR%RO`8>72-cb3}ZoM zPmg_k;4+JA1i?th3zdYzuaf!WO}c}qyX$N#bW4N7byZ6w8_UU=uMNY0xXjlu<+Fv+ zF{2EnkT0G(WzeH(cb-Y4ju8*;8=HdE0vWu_6L$(=8!1Y0(s z_$$XRf`^2;4(mS<~u|CQ^YU~TE#l_ zaSm?Xz-NMp*BczP41pbbm>t>|r`YKb@WH$ShVEn7s8xPT= zl4~eWCbzWts?DEmWz7*pw9p11F4t2$2aj%u3hoG>-+-fYSkSu5KLY3NO}?xzu|;o5 z&nLI$2et~jt17N3r~kaaY;7iK7wz?Ed+?|0KYpi9uAJrN*j^uT?oM4K6HN1|(e!Kp2~ z*eTS+!7UgSXJ!8_K85o4=YONh!=~gxNC>GzjDFe@2j7(fy71FS7|+QBn~YP}^r3h? zoy<&bz->(+Rz31LkzmF479AzKD7&leWirfyi2SEgpIM*erv1&ekte4xx>V$?&&P{M z#@LD2g~nrY80odUMB(`mA%3+(ZZzg(AclG4kIv#^L7ks}2>LE7d+HdFy;cI%Be<|7 zW<$2P0RO8jV6IchlcE9V!Msgf8NXR)!9_e zQ3^`uivQj^US@cGd>ITh|1;zQIh9n77_J-w6yU%YZO;AP}X2@#g382zgF-hjuc z>*eG-vKddh$NfLFro!G-ALztZ@BW>L zg8=W)!FK%8*N5Idf-&%(1S-P5tA{Xz|t3{~3 zH%U752zbqKRk**r*5lJaVsxP-4UbeeCx%`#T79lfQ`nZ=ox$irnan9e;+rJ%dfP4Q zIMSfQM6i1L9XU@&RN>VnoXF{YHm>oe4#g=WHB9j9$1?C^p3gv$ivaH74G-ivDMx2@L(a;C6@BaNzZ!(2LTC7v$5sY3wP7mwVvl zq43K$4>y&=hGM~P5$-MJ|M=t6M^fthl>=|TKkOy?c2T*r_(K2XKU0#;e1!YF%eU_;6)wy31RgShR(l#9+Q#qA!2Nb1brJ~P#OG?)Dg9k3eS z0*WM<;Xd<_aLS@z+3?d*LoS{fQ3QQ?YHr&QA#qZxAx>Mm@7LlG+&vZq?GYgY%h0l7 zGZCb0p3e`>VG*8$H_`{`|HiN1v>Iva$u?!ajNmxUfQqT}%_Fg}l`+8a-RdbSt!;f# zqkEWxximA{Th4K6$apMm#j4CE8XtL`0}h;8`!& zHdMeoh_??q?0!CVk7D}XkBUwfeG(e_d%%&yG{T0a`;eRYBE-*#Hyf}Sa%Xz-5^V#I zQ=Vt#O|1dNagNkoIVBauUpcq!QqYm4GjWwtNJic-B z$0Xq?{t8O;$_?!z^FI2X&ex^F4vG0Q8y2e%*5@o5oYXYGUcLL=`{B1;cpWH3(L_44 zRgq85Rcz2JmVcwPVCB~8+T7IEXNvXkaMy7i*Bj+QQjEBlcI~wsuIlwmK=D=%b`5w| zyDKoki)M`yUaP~4j@wuQ4Jl2&2U}=V&J#eVEmeAS?sT?>e=mu9yzEm7(45!lJFm=c8!>Q>|xCm0I%?1Ar@B&EHkss|BdWt>@;8;KZ;Ja!5wK04UIczym z2uqWd0uAx0n}MG+0v!hn{B$E0<8+w{;mY^PU__mxsm(#4nQW4DXd>l+Q7pH0W9vaZ zb?y>J`N-j|n9To}^rVY?p?)?j>Bt-p>A~R&U`5rqr!Nq;+ahX4h3rM7GgU6A()_&5 zya$u+{!@7zyW8Hv?D#^ylVelwt8BHlP@Z%~5Ja znFCWzo~ikDYf@^!^eV11Nrtde-5HaaJy#4cEdB&)_7AnqIfdm#zHj=-kInoT7msZ5 zV)Ya|@@Usb18VaLf}Ht(?;Gz6*e-(j9I5y2+R~@##!m2HPn`JO<1+;Lm9NCo`!w@a zX(We?ESK|tE2Kkm{C|tFYA4bJ$tOFx0NWvf|FScseibQeX>q)gs#L3_fZx$((tdRf z75C%Qe9>UdWKB^I&g08^JCZ!M8{H^pfl1`wc4A>^Ra@LmO> z3~R?_sxsB%AOLZ{uzZk0Z+&!u)+zyO!&YHJ%HfT75&TXF(gPtr^34l-TgP&qLTT9_ zU$Fay>dU`MAqn0{(~)iKMxHXna_!NpMFTN{b!SGr5Oq&~S%C{L7INzC^iMRl0j$pZ zo+aVUZ~f){7~7@9B~wS++6mdD*Dcmr?68iKF+LUid<28Q4-L^b!oxx+Pw6+VXFath z@}T1yuIgnZ!Si2p!vaf_kqY6~{Eh3Al3kwty~l1mZ9AuBp9iR{R|mlTrFZFnnL8fx zR{Oyg^MUTx>*}n7q$Wsv->X)@YZp(k(mY*scAop5+)R)6jFn1xg#BWXj zMHHt?LaQWwwv02?tX`RqP=w{sn2E$mR*+(_mGQiB!5w%H?1cZ}Azy;&QvYHwOc8O= zg0lSA{H7Qt;R3JJA}4cYD41aNJj;T@{=!Ux^%fHny{(R%cCo(TG=dksF{ak1)zkWD zPciIQ>eOU2{mC&m*iptZ0UP>;|Dvy}NRWqgvaEFL8ws(y8_ zi;ZeN5(SYm%k+S>w0mZM6}2Py4raD)+5`?R#tZF9xu^do=+b2f58>8zVq$7yyz3tQk3;P2->%y4*YFB}MeK)L(lEfXQQ4uwM|E zhX+5I-oX$@?8SM{jKGuoABW*=EcI#kt0>#>F{9SUV-k8fa5fsVPVzCE@#Fv5mm{oK zvtNvgi08tws>ntYTZ_$FW5(zWXSaXFYAdc0ru2Zbw}$oD&3*nt*#?hSfS#ye=5)DI zY3Zj_g1uJ)Fx41NcV+hR^esyZgkMg6pkCYwx_+c2HA28%imPCQ{O6a#l|An?z7Uab90HjRGEi+5CiwEl8=F zm|vG^A|8>l%n*qM*_Z zE$-st>SJWOPZ?icqUG!nJG5QjxkFO}R(A_<6cfxE11j`h33@9V7$ zsHHxvBVjYz8mXM4Ytq>=VOg46>Rda%@N-^v%l5l?l#3e(0wnUDL6x^fonb4dO`T)O z_(cRezQcE@#h09HtJUd6uit_5-DL|*T$1DY#!q`$=PTPk zts_ZqO?F9fyAcM&eY15VTX(U=@Sey?X;^8V#D}aKid)3$I>L{#*>_CFbtxo?MLThZ zVbO=#sAJab`tu<0rT+Ef2l^db{lEgMb}}~i9zy{vP4So|L$s3s_tbSIhAzige|LxU zt=pT8w|WfI5{h1bS$DB{+GOa!LaddB9ta=5Uh#q%_;EPEkJIkmthA)4jFV&xpR#hS zY;zMS*^Qlnos}WVne3CI%&6cuRj>5Jvjl@Z#JBp-Yn_8Csr_S~ZTYlGf5s6R&}ce{lxP2_JQbSoOJvfebfX5WZoqKP%b>rJo%NqoTU=GfG#cswsGP*geOS4K_9eIpQ z{5ah+sjda`ldIHDv^QhgYUUB-7~cZ`5F4!TQ!671e1wH3^lc0}yYV*W(ncXn3a4CC zZ5Y(Q{Nlk)1ftKac=n1kGE%}u1u7U(Gk}lj<1`Cue9(9Dhffn$)Ygxo#-YkCJVB9@ znUCl>YhLWwVNZg5^M(PYV5|h$;nI!uX^TcI|HnHERvGxtGUWxXFaZYC0}=no`hT|f z8Fti5wJL!_4F{?or+a|u7W{;taXv2n4P?*{vDS4bx!;o~jchqHGIwR4yJz=`Zd}Jv z?&K~G2%*fdYn&~)R08tCj!!Nb2egQ3s5u|Eb!}@bxxr5;5|3be>@e3e_p0F4>KIV4 zu?mgb@Wg-+7G?ieL;&`BcIB{!z#*x@`D7W;yKPY=YGcW=NVsMjVjUP}c2s64YP`0< zX1F#bG@0YcKGDuEUNS?MOw~S8y-EBq9`6Vna0qJ%+STV9+p4_NQ=^$t4|J2Ms+vMG zMH1fBJyKibZg5$j=>br~C_EGAzI<;4tqni^9-w>u2(c_!TOKfRX5^m1$UQC-&l0@X zW=Jbu5tf2j#3X6bQfRTdD8=>RWt2g7ES_pF;ZU zr~PK$$br6}@Yvt1?d_4{7sOH7hd?7W{Uf`r3x7BA

    0u4r*BO_P@Xh5guEuAu=(1 z(W?(C(^Dq|VkuIM<^F>C-%6>UWFWUr!8u`@YIL!xe+*~8^MFqcWh2}_1Q2ufyc$^_ z0Cw_-_J5B_L{P-p@6b5lxa5BrCcTCKR07rt+27U+XQQ5~uCh<+aJGZ3~MmlJ??$rvQP-tJVJ2!uMh-WvT-pr2qs!Vt*i|uj%<&XrG=E zoWK4L@u|2(0;$^40xJ`Cfl#)oUt`X(|aEY&uwIBAP96?5l(6Omr z3Ilzxx8u&}wHwI<=?11&%W224e2>l0)_yjfNL7}tI(F_Nm_~7mBK)J;P$swW8XY&k zb%e5XRli7WPm#fqX9(qi3rnquF#}I1nL*}#QK~&oK5Xk}=nX2PPx8bJ-s8;h>96NA zsG-*`SNETSFvu><;njS{6NmW|!xR~?Bk<*k*`Omr??NQhgC)ldiB@cneFtW&Sqk~| z%}*;bg#SsW4o}0V@~s$4MUj9duBda)e3Oxlcf7e@bH&}55pD37A(3pGZ%ST{W{6z% zn^Wxe)=MeXW%7#}DPnqGg6axrvlR2q25CI1DzRc~IQESuPm&K4F{S&m{^?B%9YS*Zqc}pu1sg_`|9XO;xciWfj?@pc*#`={F+N#$#dY!N%>rGGd3=5YujH|(%51#}2pu|Sn z$Ng9a$qTIx1nv|m0l_bKIi1pq_$=JI0IC7;Iq3$dS zcu|e=Fr$|AM`Vv>Xg{FfQN9t6_);rJhJF9_>UU+sZ)0x@8K6pKj4P(skkaCfAI*<& zf4>co3`R$NFI+7XrYb!P3^^H&SW{wf+*8d;3Qq+2MY%Kr2sEU2q;Kr@(!gyfQ+VU% zXp8kVq+h*>EE21WS~nKBJ8Zbowvpx}>-8hCx(gG)7VfOnGu8Z1X8oG`TRQQ0E_M_6 zD=P_n7Iz$85O2cLZs~KM0O0MM9_0yhpUcpO06`Kvl}2ADsQY_FPEI>3L=HRL=fP7m zD{bO@V(_Y#YqK((`GfV>^~2MQ2; z2Z;&sLMHdDV%gI zTRo+2u z0mT*#5#G&I-J1gk^=j4cP9IeoOisQ>Yx{^=C8nx|q$`2h|RAXIRO zl$5}aW+0%D8F9yKMrC2^^I*?hWn-!zND?S=amC~ZIIhpyFWM3PrRNGh{PCH|DnCs6 z+_cIvAF`4muULGvx>lgamAZUOh84Bxmo#mbtyP$pJ)_&$wjEu}Acy(uz=&W= zZ%(yggJQi09w5@dm+)2;6ZPDBQG#2n{L(mr4Xta5zhaV=hs7DE(0G_*6>KQ!d1QRA zFQDqxJw)Xuxh(u$oJK=JkLG~9R!i|5o5!CPaW?4{vn3(AIcGcfzZ`%B- z_wC)8&yTk064e)ToM5~gVS@X}KBIQ4bDt81+ze(;8O3S8t z1wz7yCyn$E-nfsy`0Kx>@~Uu`?c ztuXAt7?4an1H6j_l7n)=3(R>;qs@R))OnkKN=qaPJLi3!np^hvy=WpT&x|zT9GYg* znbwhwe6pF9`jN~iz3blMOx0?3 zSq-hwQD}gBu|$%3qg9mAX?Z@^x5=t__UZPt@ws^gHn30yS?p@pgfMmhQZ=ug_lzCR7zjkn4WXI znDl+)n*1`0&)4`{?ODo6?yRij*aWqRi48azNnZ_rcSvC~GOfddvkQ%jo*Sq6JL9+{ zG?v^)FK`SN&1((H%A_sR=?T8SmBatRmu4}TwzLgB?^YaeQd{^BW5r7`)5*DTPAGFI zXgbWBkj9&lC||--Y;`Sb+OLl>)cSM15`e()mCdIYqv_liJQ$vVq)4&V_co$a;%0LX zTEEO`og8TGRJ?0)_UkKqmxRBtZk`}NO3JZjql?07(XPYQ&h1{|2XbEkhP154)2D6I zJ_jckmg#N{cUR;MW(;ok#p2(K$HVD&*d`*b<8&J>DSxv+>uWvu%^#7VN3yX%?rhlR zVlZsT*hb|Lu9AE*~p}fAUVC)`cLS*JSX+P7m3vC?}x@!}Qsc z*DV#?3Kzdgx(~T@$XcXNUUnh5qb~jj&q%GRQ=~KE*XYP*G8uZJbs6%oK@gb@xIH6d zYz<;-?jFDi6{~1F^tu)6xc2BykNHrO>_82s)Q?}_ zXO-=DF%+g}R(%_h{0pXS?^~{`Ymsb5R;N#+!}ZQm=`@}(!RBPZnDXGDu9q=&pJ+jP z>L;t&)VamMo=rcFp@B_5OxlI{`GFmaHC*27zdkEi(`7yFCo`y1atqnwDiiH$xlvze zZ8V;s168_j!u6%Jq<54+O+G56XDcNtcfi4%?bBs?;?ZpCZJ@%I$1Zw>6*c)|ZgTcv z%dF!0%&DcvYM-$f^w~jH?6!VF37aZjHI(J;vZ*lAP2L4vMxXXTm*bLtPExhxQnyWu zveD@j@?AI*Oy2c!(@!3gzIQm#O1ulh>exd`*wUFCd!l%^W}QsG_7}VXvzA=&MsLF6 zQ`)_Ez4HU3_nA0CiPm~FIE0yg%ZqTLg7Du>G$yfmyZ4kpMkrJ1y~1xKl6gsQ8;<_g znV?)H*O#M(Ib|{_xybmkHetI9?>A`hgA7jZ9mpo9hFl&WCYAWGR-Li$F%#t_LcaE| z7%WiyL+hwd+FmNj9>iwW_x4BBK);cowE_ZU_AcIlr z+*6_z-SMe6$sFncdBT&7nM<=u!;WTSwl8)t+iV_t*N~H?EYgT4xPWA3P^SqhQK)*n zO{DGNV-SIS3qT7fDTGFpBI+E>i+V+4LM={3?ZaM{;eR#f`^Fi7NFdSE+yvnL7ZlV3 za(zPtuD);g@#im=lBpqql?{`qy=}**-vZ)IyNZ9M^JS#L*UG%kUwe__^U+IAN--I4 zZ|tBR;B@W@To%#c6vIm(=D3TF_P3LK_LiUgmYgtl7$Z-_5!fvPnEf974b>4w-cW)- z=)Pjk1prv3GHz7++rVCy3NADm6kWwO8EgZi+F7Abo}ZhZA6a75=M(b1@ePG{@b~%O zNrl_lDN@L@`{+n$iO0v}knce2SXrdbthP22z+=JKzWG8($J%7ll_!|}g!fC5{Nl(dsQv#X4*dT!NwAF5&s*BI>uwIp2o7`Z{dINMbC^n+Uu$ny9*rb$&WZfQB)^J2 zQS75U==1{dC54@iMYYu5CH~FR4|3X}^JzNz`syF0ruHin5N{a4tCk$_xHQ z@2nuB2-cfcSm-QM5r?Q_!=S)F;(F?=zC`(A<1X2z-Ufclf~Q@3*LHHM>i(7XZWOpm zh@BExiK89mVnLM8h|@C)If+t+>@Hq*u?1eB48w=ww9Eft=fKHoh^OSVkljLuus|AApFjf&* ziM?SosAv2?3sPuYM#^?o#^oioiN3lEkNr=bF#S!DD$kt%!6Kc2eQwJ`@WVi0=V z02$Pppn88V^1$lIWTm->AQ+ib%jHDy)mg9A;*>ykw~8JIwf3K4z)m5DR~A3lcC8hc$Y=E|FDQb7IX3s1L!mY`hHPS6qn zTFcIUvL&t(JilYUi$T{u4@EsJO@I>ucy;1!jGP!C20#Cb{0@b_c?umITrTkY7EK(O z)e+U3r6yTqBenz8uZYM7Ibc@5Rrnq=^}-)yn@&HDwso}>$!dK$m1^{Cd?$%y7rX6O z=%oUKAN|H~SIzl2x)u2a&4iV@RgjC3&XJ30rSJQHqt-p+Qghv0o*mU1bWI)_u7tZ& z6Zspn{%XZ(F7Mb{usKoxYf1dw_S9e+&J~>7a|dqIT=u5N6ux@f?gT$D4yIbKS2Jlw z0q_0Y2;P;3u0nc@#ftF2fZ<;jR?$LvNr0v($!4Xf>?ahX>PKKhh+eFoB z9|zX&%E!cxEoY8U*K!Ap*U?UjepPZXpzWDo8 zRa9^-zT2-}O1~L}mREy?vO_~fpQ!SUE0Q2pC!t@D@BAPJ+Am?v`(U>H_r@Y1)W7lG z>ul6TLRcE3`&}O6*O>f5-galic9o+i6GntFBnAkN62^I)jk-*DXf0SX@kHQnI~9PB z%8K+SU%F8!ox*`~=kzvdn5%E^H|!dhNDss@E3(~C-8PM)IM9=*Q~T#1P6(4h%IyY{ zx8cO}`6Hh$A=&qTWr<}WeF>zK?u46nKnMBh9~Y5x2L(>~#^?Vp80WX$+Arbzf%-2| z`Q>@+aOeLp82fKR{{zVKr}tw(1{}$E=Fg7L*i-Z-g?yHJcG*NXT_BP%YdcnGT3$5Sq8q9*u}Z=l}NBZf8kWvkzcqj^Esle zwV4_uZXi6w$YFa6cE`2A6dXqLW)eEg$ePqGk=Z z$4uSZo(jIAF5aFCEEPp?JJ&YE&Gsbb8D>Ga4)r679eg4Eu3A6dmI}Shk0~=CHc-yP z$~#fHvm{@bvH+|C+z!mQkL>rie=c84+kGwyl9>~u>k10Sw}Xiw0Ue`U ztmpzU6N>t2x8EBwQh+ytEpRTN!XGTt8(%7Ds3UG=D z=3obm!bgFVA$B&RF!lA@ftTt%o?t5SJu&hTw70i{IfP)_maq}+a+4Vx>_CDM3d&DC z%rC>qTp!i@zbtvOb1KC4!;cY&;VWNtFYg>3vHb>-{^Pbg)yV9w+k&P@YW4r{=U}Rt z1DmvaMckIaB~eYzpnTMx1CGPk;n1noN5cNYcNTNN!5G&-sl^}RXK_h@#Z^-;C3*k& zezn6F7#UCj9?erV>ylC$3=+;wp_Wu3mH{LJL{0rY`wpClQ>cEUx>wn~dxS?u3P|ot zDot;+814Q3$@$8!Vv@b;<=w+S)Ndh0D_@QMs{g}m5k2T2+B*(l=VT9WL!4qAJGI>VNNW-=(_HME1HzmE69MkLN2gTZ2L1hb~?yWmXg!4OP=DbhC;$!K!Z*R?(>#0v_=ees3f9-!lzLc)`TZ)@_M`KA~t@4zx(v6rT^S+`PrI(nuRxg)XH0ubiPk&5(2X^iJ zwbHOVIFyE_+Y+3JffHNVW=>5~%11EjKG*X)&hyGeq-M1=5)HQ_c3S^|PRkBVyc3u{ zmZj>LZ;Yp}{g24Xj|HL53)bCfTSMKJk1`pXF0~2q1LEdLXV66&wyb`BRX3}?+e&7ZQ|fnG@he(|@@)Oc`x?^stv4wV3pA#JPE)AW(wO96 z8kgOtY8!=eD@Y^j4f|r;Z%EcdDztFm#SUTwwOXCAtN172ncfvLjyV+F#zCau{I5jlar zh&ss20cY)tv{mbdT~lYkp+IQ3?>d4CmEZ3K1k}Y@Y^(C~&vd2v*x2fEPlc^`Ilucj zE-t?QHz|xyqN++YV_hd>bd%$Pg=f8YNV2R6_-ut)W* U>MQra@sJR?D~gxXF6n#x56|xejQ{`u diff --git a/docs/articles/index.html b/docs/articles/index.html index 1987128..fdbb977 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -88,6 +88,9 @@

  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • @@ -121,6 +124,7 @@

    All vignettes

    diff --git a/docs/articles/intro.html b/docs/articles/intro.html new file mode 100644 index 0000000..9ea4134 --- /dev/null +++ b/docs/articles/intro.html @@ -0,0 +1,357 @@ + + + + + + + +Introduction: serosurvey R package • serosurvey + + + + + + + + + + +
    +
    + + + + +
    +
    + + + + +
    +

    +Introduction

    +

    Here we present three examples, definitions and related references:

    +
    library(serosurvey)
    + +
    +

    +2. survey: Estimate multiple prevalences

    +
      +
    • +

      In the Article tab we provide a workflow to estimate multiple prevalences:

      +
        +
      • using different set of covariates and outcomes as numerators or denominators,
      • +
      • in one single pipe operation
      • +
      +
    • +
    +
    # crear matriz
    +  #
    +  # set 01 of denominator-numerator
    +  #
    +expand_grid(
    +  design=list(design),
    +  denominator=c("covariate_01","covariate_02"), # covariates
    +  numerator=c("outcome_one","outcome_two") # outcomes
    +  ) %>% 
    +  #
    +  # set 02 of denominator-numerator (e.g. within main outcome)
    +  #
    +  union_all(
    +    expand_grid(
    +      design=list(design),
    +      denominator=c("outcome_one","outcome_two"), # outcomes
    +      numerator=c("covariate_02") # covariates
    +    )
    +  ) %>% 
    +  #
    +  # create symbols (to be readed as arguments)
    +  #
    +  mutate(
    +    denominator=map(denominator,dplyr::sym),
    +    numerator=map(numerator,dplyr::sym)
    +  ) %>% 
    +  #
    +  # estimate prevalence
    +  #
    +  mutate(output=pmap(.l = select(.,design,denominator,numerator),
    +                     .f = serosvy_proportion)) %>% 
    +  #
    +  # show the outcome
    +  #
    +  select(-design,-denominator,-numerator) %>% 
    +  unnest(cols = c(output)) %>% 
    +  print(n=Inf)
    +#> # A tibble: 25 x 23
    +#>    denominator denominator_lev~ numerator numerator_level   prop prop_low
    +#>    <chr>       <fct>            <chr>     <fct>            <dbl>    <dbl>
    +#>  1 covariate_~ E                outcome_~ No              0.211   0.130  
    +#>  2 covariate_~ E                outcome_~ Yes             0.789   0.675  
    +#>  3 covariate_~ H                outcome_~ No              0.852   0.564  
    +#>  4 covariate_~ H                outcome_~ Yes             0.148   0.0377 
    +#>  5 covariate_~ M                outcome_~ No              0.552   0.224  
    +#>  6 covariate_~ M                outcome_~ Yes             0.448   0.160  
    +#>  7 covariate_~ E                outcome_~ (-0.1,50]       0.182   0.0499 
    +#>  8 covariate_~ E                outcome_~ (50,100]        0.818   0.515  
    +#>  9 covariate_~ H                outcome_~ (-0.1,50]       0.0769  0.00876
    +#> 10 covariate_~ H                outcome_~ (50,100]        0.923   0.560  
    +#> 11 covariate_~ M                outcome_~ (50,100]        1.00    1.00   
    +#> 12 covariate_~ No               outcome_~ No              1.00    1.00   
    +#> 13 covariate_~ Yes              outcome_~ No              0.0334  0.00884
    +#> 14 covariate_~ Yes              outcome_~ Yes             0.967   0.882  
    +#> 15 covariate_~ No               outcome_~ (-0.1,50]       0.218   0.0670 
    +#> 16 covariate_~ No               outcome_~ (50,100]        0.782   0.479  
    +#> 17 covariate_~ Yes              outcome_~ (-0.1,50]       0.0914  0.0214 
    +#> 18 covariate_~ Yes              outcome_~ (50,100]        0.909   0.684  
    +#> 19 outcome_one No               covariat~ No              0.939   0.778  
    +#> 20 outcome_one No               covariat~ Yes             0.0615  0.0148 
    +#> 21 outcome_one Yes              covariat~ Yes             1.00    1.00   
    +#> 22 outcome_two (-0.1,50]        covariat~ No              0.549   0.294  
    +#> 23 outcome_two (-0.1,50]        covariat~ Yes             0.451   0.219  
    +#> 24 outcome_two (50,100]         covariat~ No              0.305   0.188  
    +#> 25 outcome_two (50,100]         covariat~ Yes             0.695   0.546  
    +#> # ... with 17 more variables: prop_upp <dbl>, prop_cv <dbl>,
    +#> #   prop_se <dbl>, total <dbl>, total_low <dbl>, total_upp <dbl>,
    +#> #   total_cv <dbl>, total_se <dbl>, total_deff <dbl>, total_den <dbl>,
    +#> #   total_den_low <dbl>, total_den_upp <dbl>, raw_num <int>,
    +#> #   raw_den <int>, raw_prop <dbl>, raw_prop_low <dbl>, raw_prop_upp <dbl>
    +
    +

    +learnr tutorial

    +
      +
    • Learn to build this with in a tutorial in Spanish:
    • +
    +
    # install learner and run tutorial
    +if(!require("learnr")) install.packages("learnr")
    +learnr::run_tutorial(name = "taller",package = "serosurvey")
    +
    +
    +
    +

    +3. serology: Estimate prevalence Under misclassification

    +
      +
    • We gather one frequentist approach (Rogan and Gladen 1978), available in different Github repos, that deal with misclassification due to an imperfect diagnostic test (Azman et al. 2020; Takahashi, Greenhouse, and Rodríguez-Barraquer 2020). Check the Reference tab.

    • +
    • We provide tidy outputs for bayesian approaches developed in Daniel B. Larremore et al. (2020) here and Daniel B Larremore et al. (2020) here:

    • +
    • You can use them with purrr and furrr to efficiently iterate and parallelize this step for multiple prevalences. Check the workflow in Article tab.

    • +
    + +
    +

    +Unknown test performance - Bayesian method +

    +
      +
    • The test performance is called “unknown” or “uncertain” when test sensitivity and specificity are not known with certainty (Kritsotakis 2020; Diggle 2011; Gelman and Carpenter 2020) and lab validation data is available with a limited set of samples, tipically during a novel pathogen outbreak.
    • +
    + +

    +
    example("serosvy_unknown_sample_posterior")
    +
    +
    +
    +
    +

    +Contributing

    +

    Feel free to fill an issue or contribute with your functions or workflows in a pull request.

    +

    Here are a list of publications with interesting approaches using R:

    +
      +
    • Silveira et al. (2020) and Hallal et al. (2020) analysed a serological survey accounting for sampling design and test validity using parametric bootstraping, following Lewis and Torgerson (2012).

    • +
    • Flor et al. (2020) implemented a lot of frequentist and bayesian methods for test with known sensitivity and specificity. Code is available here.

    • +
    • Gelman and Carpenter (2020) also applied Bayesian inference with hierarchical regression and post-stratification to account for test uncertainty with unknown specificity and sensitivity. Here a case-study.

    • +
    +
    +
    +

    +References

    +
    +
    +

    Azman, Andrew S, Stephen Lauer, M. Taufiqur Rahman Bhuiyan, Francisco J Luquero, Daniel T Leung, Sonia Hegde, Jason B Harris, et al. 2020. “Vibrio Cholerae O1 Transmission in Bangladesh: Insights from a Nationally- Representative Serosurvey,” March. https://doi.org/10.1101/2020.03.13.20035352.

    +
    +
    +

    Diggle, Peter J. 2011. “Estimating Prevalence Using an Imperfect Test.” Epidemiology Research International 2011: 1–5. https://doi.org/10.1155/2011/608719.

    +
    +
    +

    Flor, Matthias, Michael Weiß, Thomas Selhorst, Christine Müller-Graf, and Matthias Greiner. 2020. “Comparison of Bayesian and Frequentist Methods for Prevalence Estimation Under Misclassification.” BMC Public Health 20 (1). https://doi.org/10.1186/s12889-020-09177-4.

    +
    +
    +

    Gelman, Andrew, and Bob Carpenter. 2020. “Bayesian Analysis of Tests with Unknown Specificity and Sensitivity.” Journal of the Royal Statistical Society: Series C (Applied Statistics), August. https://doi.org/10.1111/rssc.12435.

    +
    +
    +

    Hallal, Pedro C, Fernando P Hartwig, Bernardo L Horta, Mariângela F Silveira, Claudio J Struchiner, Luı́s P Vidaletti, Nelson A Neumann, et al. 2020. “SARS-CoV-2 Antibody Prevalence in Brazil: Results from Two Successive Nationwide Serological Household Surveys.” The Lancet Global Health, September. https://doi.org/10.1016/s2214-109x(20)30387-9.

    +
    +
    +

    Kritsotakis, Evangelos I. 2020. “On the Importance of Population-Based Serological Surveys of SARS-CoV-2 Without Overlooking Their Inherent Uncertainties.” Public Health in Practice 1 (November): 100013. https://doi.org/10.1016/j.puhip.2020.100013.

    +
    +
    +

    Larremore, Daniel B, Bailey K Fosdick, Kate M Bubar, Sam Zhang, Stephen M Kissler, C. Jessica E. Metcalf, Caroline Buckee, and Yonatan Grad. 2020. “Estimating SARS-CoV-2 Seroprevalence and Epidemiological Parameters with Uncertainty from Serological Surveys.” medRxiv, April. https://doi.org/10.1101/2020.04.15.20067066.

    +
    +
    +

    Larremore, Daniel B., Bailey K. Fosdick, Sam Zhang, and Yonatan H. Grad. 2020. “Jointly Modeling Prevalence, Sensitivity and Specificity for Optimal Sample Allocation.” bioRxiv, May. https://doi.org/10.1101/2020.05.23.112649.

    +
    +
    +

    Lewis, Fraser I, and Paul R Torgerson. 2012. “A Tutorial in Estimating the Prevalence of Disease in Humans and Animals in the Absence of a Gold Standard Diagnostic.” Emerging Themes in Epidemiology 9 (1). https://doi.org/10.1186/1742-7622-9-9.

    +
    +
    +

    Rogan, Walter J., and Beth Gladen. 1978. “Estimating Prevalence from the Results of A Screening Test.” American Journal of Epidemiology 107 (1): 71–76. https://doi.org/10.1093/oxfordjournals.aje.a112510.

    +
    +
    +

    Silveira, Mariângela F., Aluı́sio J. D. Barros, Bernardo L. Horta, Lúcia C. Pellanda, Gabriel D. Victora, Odir A. Dellagostin, Claudio J. Struchiner, et al. 2020. “Population-Based Surveys of Antibodies Against SARS-CoV-2 in Southern Brazil.” Nature Medicine 26 (8): 1196–9. https://doi.org/10.1038/s41591-020-0992-3.

    +
    +
    +

    Takahashi, Saki, Bryan Greenhouse, and Isabel Rodríguez-Barraquer. 2020. “Are SARS-CoV-2 seroprevalence estimates biased?” The Journal of Infectious Diseases, August. https://doi.org/10.1093/infdis/jiaa523.

    +
    +
    +
    +
    + + + +
    + + + +
    + +
    +

    Site built with pkgdown 1.4.1.

    +
    + +
    +
    + + + + + + diff --git a/docs/articles/intro_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/intro_files/figure-html/unnamed-chunk-10-1.png new file mode 100644 index 0000000000000000000000000000000000000000..dbcb34382abf41532b88286dbf6e0800548d390d GIT binary patch literal 20502 zcmeIac|6qZ`#Ac3j~T{JvdfYrQ7UC$vXoYODq9IfBw`|rEHfxtEXh-ntzDrgLRn^{ zP(o$jN4D%ESqF3O_h?4_KA&^G=XK8O{BzFncs#G?ec$(WUH7%!*LB_3`+fD0nJF)q z1Q!HBynFYU9EKncA_TEPST^wFXV^6Z2!anDI&gFs_+JRph9GB1TN}~_e{Vp}d1`8E z;1Tiw`El0PzM<{xtnCc`=4sz(JBa*v96T6((8J@P2l$(DFuKyl#>SZe#aSBy3y|r^ z&kgX8^9}Gf&pEHnIgbvOA&ZcoXpiU&kLXH|jNWJf%LDv^2N}^BmC@iyCHSS^(1vaR z+|J+^0mJ~4cO$RuMjQC0XLuaU@bJip_QGZZ6+HE(S+w#EgjW#e3nFxO9ZFG8XhDUE@bZ=!w zZ!efjA08g2Ll8g!K!9cRwmdqR*PB7_1z-@s02o+Ar_+lLV=VwXIdOYzydh{!1oAH& z(>HM%f@Gn+CWc4xNuwRKGAXN|u8FNyimtNCXXnnJIbfWbSH9LYBs_0*LuszkYLjys zkFH`~U*fr`FiNL8rnU^*mU!!UZ%*~@Uz~?0M}ktk`-@)FM#hc?K#;(RTk|jkW$!|Z zK}0lm3&1Ym070u{$q=+|ClQAB5P{flKrlNb3!`|Tov8mdQD8IK9s@yEUr|N#BGLxa z)Gbc`=5F^uHa71;`1J)6^z=Viy80*gwXry9Y_1|wZ@!<*~{94ye*9B>UAeEXIo z(O$244co%^r5DptF&Afg@l{r6Yhk$2kT|)Mc)CxFVp@2FC^I$|TtEn}IX{^qW~Nki}tN>30|0TmZ{0JOCD6jje_CB+eO z6+7$V6raf$UVQ;e7m(%1|H!OT;XwgY7NnHP1afW>Ifda0fm}ijiK&o5CcU$b8#fcS zrwH9)`K_F~DwoeLw1!R9u%Fh8+QDBie(oHw%o;hgl^tVv=DSygVy9nTZ_PXe{gaa@!TI07IcvO zk7bm451y$(WYX>5lg*-_fpC@~rR^qq8xv3eUV22H{6>ytR?h?}?SQ0Z{FHhu&Vyx} zxU*O{=oMyag$(KK}_O8RwZ|B5et#=9=}YsVxe2G&n9AquUWjL&R1 z&&AJpmAVm4C6kf796w6rNX7go(AHU@)<#TJjNCz6 z)7^iwQ2p>XaX9Zqy!(;ey?;{~A1yJLEa)I#`ceI~$^WvbwMz>g6aFt0?xyJ|lRN&) zzFH}%1W|OsV(<^A#BFOUV#SSCEJ<>7ydBD4mGqx9^h8*mvBeGH$?>TF+*M=!{U{01 zWG<=#Ako<*SY9oXr5cK_d%uL%!TNy4#>h$!r`;<`_V17}U-Y!!Nn*@+npvKfyq9Fc z))ghV>b6NS_l24~S);fN>sIOP zz8tNIT~R0U!qQugf=LCLy?Hruaj^-PSsbd!zeiF=wU;EWZfp6sqVn^KXM32qw6xa% z_7K)A_04nIx=l@x<=C$9DcSy9@H;_F#6*)`p8GDJv!Z~}XZ#6Gn1X*OKiXR5^tWAK z;rNx?Gk&LuS$?8H$93MDIt#MMllm%0zCK^5PToy@=s6WKTdA_574pYAyBgpzQO$Wv znJY1$*RJgJ!3Wiy0a)C){(oCz&kv934@Z|YaQp{xLFj@blpn`~Wd9-#FEu}`M84(k zaiCQ`hlgcO(dFHkGX`*p;OyajgRwSOR`~Y4-rfLy!JRa#^YUL)XQh?RRNeF>POqUj zhdlJ04f$EAvWunR@~$!|8oor&!vw|K)Jm1ztbv}VhdE}$A==8eA8P*6I7h6-L>CX5 zzLM`DvhbRo|Ka%)vO+hn#CcL>FG*L~0ypB?HyIpRBQCnaqR@TvVM2n<%R8HSfp?? z2G%GEIOL;*DC<|YZ#lffJ_^!NS&c5Z%9^Z#1SBV6ll^w~(KjinX?3)uQM$evUX);QTaS^;9YZJvHn&W#KsT5T- z;fBInAN%FGpkvAvo2)`f%Ze)%(yZr_%%VjMdcerY%m<5xEa>R!i2eLlM)4ju#5 zogBQ>P!xhHIo9S6R(5BQ4B2$)WFBOL&Q7{3-o|it$g>$59}q#{RYpc~tiZd}mOXd2 z*Ww0Ldwj=dK;oy$SrE1U4oujddT~5{G41!=FUyW-#P%%1L)c4kdG%=rHl3op8z#ge4EQ zY%5{O!J#&N1f~0svB<%xXk}6GiBtXgu@%R8R#OHMVq$;E_wci9Z+iIVwwUB1tT5#x zO47<^!(!#^igzl08~)i*Q8g5UPbW88+}^9dO`0VFht#4VOztLIVwS0@dVba0PurfE zmMgMUbmSk(QaBIwF}Xk7#>(c&)1cix^My)h&tS6|nbp#zG0!hhD!02wg3qnf*IHeU zrjZgKgoi_nn0@3Rbt#;e`i$KFO6mm{x7Wv2gt5}$Lv9}pA^zr;ta{*o4( znW1u|UjL!?V#n$o+tJM?NL*`BB#m<2LxuQ-o59|8jjE;BbshZ2*qC?_iCU*0{Je;L zB-hPmE81+m=fAC&(Ul1~x#tqphLI+HO6ofF4=r-&m*0{4F9HriNI0xV4MK;@ZAG~U zZ|bYJcp}W)!$A*tY1GfJP=~%$*TbLHNy=|4rk$jx*m}IVjGR`(7KSn8F9M3>-64uu z+n%u)yN#Rru%lE`roo`7fH2!FDKj!VmoGjU$3$5^FI9_LRYl14?I8|4Cl* zxF&HIq!=Te$>XClwWPv;oTb6;v9So+0Kc!F!DuHlN1-08KIR|!P{EQIfJr%ji<8BP zI4h8}b!N~fN9-0eXJ$$HwPE86j{?j+__Gnk97zg=>t6~CFPo{V>35i6rB zRf%f6^k$+5zVum#r__)5oFiCk(6_C;M%}#a%7G^ap+8qsA__Z_No_(7DmOlIIpvl2 zM5XfWJkxm+`wv^Y3bj4M-DG{8jNu$7HG@9wIX*hJ5MfCylrj0P@FNeTVe$7)oR~k} zzyC`BZL(U(O8h8G#k5M$#q@KF61fvRvtBFPh+h(sr05|!Y~#<4r(f`!IfBwXj$~nL zEaI2Sg>=ZYB`bF`yVE;a%G4`PG4}Qs{bh?}h`wyR*BOZcw7^;367Gx9NdBqw!$j#W8rUbk#X{vzg_$vrF*Sbc zjaQi0GBv)NhNPp(`^~yO4&IoOHr9+EhidCCzUdgXvTSBrV*&@4%Rd{S8$Xam&H{)jhnOfQ`aqupb&o%N(c{t`kBQ`q|_`z{zvZ@oG^!9o>{cF;h zRhR-Bhj{yht=nwmS-B*@Zu@24_vx9#AewTBuus_W_h_{Ji}R89#JY#~h)^ax7rn$1 zGFcvwQln6@*<#0h;d3Y^c>Hx)rPIo>=C@hP>%JvHLj;75qD!B`cdvJ29VrFgA4{+2 zP8Pm_Qn`wLSgGs&jgrsy-q5t4H^RNrEO&ROS1Tu?PW*QB;Q_xeSbsHs!Ad>g@3CAn zwV#C_pe~*T-u9D!4~?Wc_xr`cB`>=$V_R0xwR#b&%YW5K{}^A-7U&qv*ZTLeRu`G2 zSvS%3P6O<>vy+a&!b z+u){!Rh00>$K>aAx1$k(F$-(YW9?Dxhdk$Al1J-A{u;S|wl5yikWybfM5%GD`iqFP zq3L+YeocPyX538fF8R0}tRtws;raNXlYwdH*b|^}PMp>?2?>-tQg*@ZAOARxJ6V)} z?yebern>9qU!v3aWgjT56iF{Qc$16zKA^tb^bgt1p1N0Je0f49f3FejA=3QUu4BSe z7WhQhn{=+6yBsKjM%3b|b;3z3c z>sVJQ^dU_caBa<>yTtDWE8S@3B&~?pj}olI+pZoktaT|iY*!RR^OqT!Crvp$r$Fu) zmC?2RIlH2jXWL+D!gxaxv`ayZB8f`Uxvi#w*1UC7-MI?3O97C&md>8-{*x|Vj%GO$ zx`4FUa5Ut(vI|qa&*s3spHyM>JOT&{Zsjob^K}EH17soDX7G>0@F$j$wK@|sYUKLV zL2}!-lIgFiZM>{ zblF@s-M>c;6AMkVc)`efHr+#itvN(A?+V&+!I!=EyYEkCtoAwz(umPJb3#GL23=r9x!U%T8R9iqqI6Sk9OxCKc!Vf= zC>k)`P$CwWLqg+kP1w)wEhG!&$H_1W+k`GyOYV%MzpH&hny90ruSEO~UDFpJtI?%Z z6pL~~w`g2N5!C?x&LnN4KDp!fkkt{>pkIFu>5)5t#ruF&yiF+ccC%on$#e1JNXs-xUL{7J-jHeF@8gvyPe8u90fPkh;5?NLRaW>t%NtpD7m#aCF}j<}vY4CpT8!=w}> zFEB&nTT%{;oqn~)+n@MrO$(foc;f&TjW_bN9wDFw9pqG8Jg~Tp3g-@#!YQ`%#;Z3x z%6meMK5Zq(5wMkj(SOt-^qO8T&Q6ZLr8is8*1F_p-Q-+^ zj>|iWXqNwr-Hn@<*G_@c4u30OP2<6r(>&RBZID`o66GC*k@3qeHUqX4?KaT>H4o&+Yy$a*x18@D#rJFB`9A#duy1Iws;A9q&jb2EZw$xUmh&2 zv)+Qm=ubS-`AT#+PE!gN)_;*`nzXB?j>hG(+1 zZ^nIo)-Czl=U7~YUjPO@l&@3y>v0GyJ>oTAvB&mMF!GmKa2obQB7> zILpjHEo_P0W1dTJNwnF>V7Cwxwky2(4GDvu-KPICEy5gaecO&`K%dN_PYwkf3t&TA zTl&M%NlACOu+%r?-!mMDUFqqn!L&G^ncSh)9U!>RhD1BMcu;{2YZ9(IhSVMWcM51* zF+^H$U0k!hAwD?wK`FZ6ITCq@E3E~Ids^a#VLB;5LzDtd4R<~@aFk7)*2tsv+E~SAFm_7I?7hm zMOv8B7)Fz(&qd@r2~t2L_#_)LP2az^53M=Om~??HaG0M!o9}-76oYy%10T;RBl>uDu@cn@~}0ZLt(4_Mqz9Zy$Pr5#uWdnmg) ze&WOpj+5UiZ6xQAgsR>$CL(MyYzUfc81M}0j;|VXop2lm2j(?SD*OC#OQK7#;%%Sn zR~g)TLE;>KJzWu_Pq+>WY2Z#1gV78;dRSSRJXyj7_W>e|5`4@q&P`sH*|nB@4w#h^ z+-XGE&rQu7fB(v3>sFM?epRyFnCsLgaAR~CjptU~881rF>biQm2A$!+_WAXK!ccqspyOko+Ry#xH6ws#C}k^Z$HOB zcn_Hu<6M@Z;fV$T$xy%{V19y>i^BYCR%7}w__yR`5PLBN!E6_r-pv@Kj(waEv;&!w z0^$iTz9>@*e)9}hz^yyZ

    grCS+QHpauQcTv5o&zs>a4MPfx`SEG)L{I0dnz`-(qds?jS zoCr|9tz;RQ&iRE9TH-xUoGFrNsU5}>74_@aoGz(0B%bDEpY@9v37)<<)n^_|x14e@ zo9Xp>EP~41*aOwh{y1}TA3t@r>F%xsPj7JAgu+V{91o?-B5Sc=$v&E6#Bi@DKCkora%?t zUj5D=_kWR*SwesAA}(%lb@bxJjbmTMu8pl1K?RDn#O7caWONb^1w9U?d7rTB#EgRd z$GH+|5xAJuS0Aab0_sum9spXZxN&xT#D3|VPoQ+sLW=E+dLyDmpExBLToEq42-ETP zy$CGTfjA@6w7B@GJIXq%xX0Jrtm!Q99A3QCN=y|9PWXj2-?=A(K;keDb!o<6p)tmT zJ~@|47!{44>GgdLZgV$QL6VCK zKV4i51`@Lyfe(GfP2Gubp*5^U8ApAiE(-9AQsNCXrNU2k=shon!R>24)HY6T6{4Un zu*X3arGSL7QnB`u#dIHYH&0M<1{c$DqAE>!sP;`v5MmB#2DH3!*HK;|B#;1SlhB%k zj?#7Hf3lO_*m!M!bZaJenjKiqeJDodLwp^U8V<@OIHD4Af%=V`y43SkUUqRh3lx#Y zgYgU9jH~%c{^|g)03t8&5q7Zjm?~Uj@42OIyo_s0A99--3YP?NEm(!+Ph@nICa2b~ zRFPaiJk$lEe8okj=wwf$3!p_ni6EdPVQ$qge)@xSJ6c`7c}c^(*tfb4Mlnf7>LCs1 zH&ZqrQJCrr1n8(hP6y?wOgB+CZ{(_j{4a913taZ1p46!7cl?yY%;G#L-#o~ZP8;cz zD^nelN#)o0z0iw`YK`zXvedl+b8cwD?3&e`*_-8ST_vpgvu?A7q{( zql}c+)Ls=s8r)LLbAO?9tK`W1G3F67%a{JNO{w6p5y#+j5w`X_*fD4R2Bi zGjk1L9g=~fzod}*R!yZZay*2AQz%EDoK_~&Fl0c}A2_pT61Yb#bOB8|X~T{~x!sUC ziC145*s>~Fm2ikOF?6)E>vb3V;)NzI>e3u7pFZ9(HVN`wutO&SN@v=k2lYDz;oHkT zceXskk?85TAWSn7`t9uZ8ITvpPhL69w(B@w_Ms3EpOr!ca3)Nd^TA7t8X5DvHhj!; zAp)wkNzpjj16wL>0nvgOr7ewYF;$U8noc8JpmiB|7b>Q?AywI*usUD3kUr)C7e5t^ zl47q)NNnlCEE4PtWO$pOgRC1gYy88X?X&&u>I~AQa~$~Z_|~V#$$2HbvFVhwVy5Xumh_!k_7Gr{{jEI zebeXE$y(Y%vr;mT0}6!-vfR|-nV!Db%};(_#W?nc27#qp0*a(2LQz99)f z6#$24KaL7@PgW498`OWJuv-43gbDPh|0H@py z<5#MVBl3a=-dezd=|p8RSxTl+=!14KQ5@e-SEHaHBT-bNCJkj-C&I|*NA3&%MY zc$*_`s_))GE?!#YfC44wpi^4jYHDOsMtYVEol5(eW-%3Ar}xJ887R=N0tYST3<{{J z>NgRvw^cmU(Yns``MCV9;6i3P0AIzL&W{g)c_yPpX%z6l(CiZ>ih0Pv6iu$NXmL*3e zc>Vi`%q(CWgP)KdVyUN}B(3vDw2sk&w{Ii4Y@BQq1*N)t+I5XZn-b>El9?X1XGv{v*bu(g=<&dEgQO2F%xy-N30SM}7vp z)ke7Fgz>|yA1!iZ(_*1v)NxUsl?y^3KA9=A%wu&GGwmbHPM1}jIGPfVJE&R_P7SX? zrwlkV^Zr}AiOMKl4p@Ji**bC!i}kla(UZCz73h@Qydk^mO^Yd$QbEcXht^4XvT5U0 zbhB_(0w@LUV}!m&#F)=QS(s^U4G<+PcXV;VV?pt_N}Yc0Jdy#ZgZWkgqLk)Ky*RcjyGl)-@A$2Oi3y5Qy+s`(JFY%)%=BHNOFHa zib>=%Hd{f;92RHp;oUz~PK$Cv&H_!{b3bV0=({ZfWIVRY;6 z6Q|VdOK_O0;ep3qJ~98n(!$5Q)Rd9UhQxr+A9qND@*%5jLxE=thn(#-Xr?*NEfa}K!@)lt`NE9QcAi?F8w)4fC3fe~)8-2y? zZi^FV*4@y6+1c`7nU7ZjCU0{Avm3_ZCe&u%eI4OVd1MZkyB&^`xnvf80nUnKu=~45 zYBppCm13BRhBz;(%5$wIRVo=Xz^uGplcpFGIJ1RNy88pZ2~s$j-r&Fp(hRZ&w)?TA z>@8+2shGu^X#D*;DS5IZ(`fHJMKo$7cs%^R?YLTv>nb6KlMF}ofrt81ivU`_>eEBxoY`9#XTo>PtS_8?i|WT_&RNz^=)~e7|<9vlAOmyoQeS7nv9$dkvkbEtyrq_E~CbeU-Z* zHrqZL145={WTFmyA-!whX}57praRn7g7X^lE)2V!2U9z0pVfA_AcY{LY2FBP$58)Xf8p0dMQYa-fYNY98@G43@KUtmu;2lzllM`?t zMGIXxzd{=tfW2%;T+}xE@?j;2!EoVb3dg(I;OXJ*#_>oLwv5n(*v4^pZ(+H}Wr*gJ z@_>6~# z7f=gB-D6Uqi=t3wEY+a7V=*_t+$yOU6?5z z)6;7ALYOB->A&e?lXdg?-L{=XdCdd8Uy%d21v48(YBSKgJkvc!i=d|vK>L5$rhJfy zrJw?}^;**3@S-(Cdk#p`j6uMC>p0OZjZ$(EcX4p8rFc>%gmiIQ?99cVz2_Z2rl(I1 zezdGUCrcJgdg6705<3`EElYj$qqjEouS*N*h0CeOA4r#TS}&V$195O)e>TzAd1`A6#tMh*Ems8=2f| zA;7GFA*8NQ2vVAz2dfA(vqUB?yjuR^9uJ58fCL&UH;*Ac-ID`oK?QF#N%fMDa^7s-f>fH$p{*OfK{BMIk~Iz{Mnw7SCqZ@Hn0wQh$-Fmx zpM@BKHK=5#u{~N|*qH12jICWCYu%}ypX6`ED5c-V%mxy@P)TUOgFDkFD#q_~<`|df zudLsI#0r${0Pmt}mp2wyFs1$qkvJo_yQ2V?Y}Q6=aspv{w$3z!9Wo2mV8Iqa7fig8 zgv~-B(=W->;bpR`k5E>Y&cXVDsGk>5%i{^tx9enWOYUxaA1z+ne_PF*aS{5t9ZD5R ztm9n9;MUq!6NcN2yRt?tWd%+GJf^Z^d4hKoivl4X$SJfucRmq54hgQu-_YsN|UEn_Nnk_bM)5 zXM4&Fq+f^-nywn)V;g0UmM_KLirVDTxjbbs_T|!La8m)S)7E8)vP(Pc3*qtx<+fur z3(J{Tocs|&>&txY-$0%LAf2*Kiy@B=ZgPk8LJd4!|Y$N~Tx+I36c>`uF$@VUU zJleF$MSpq5M66a&TWzE;R#1R~eUU?;u5Fa!-MwLCp>TB@^omYk5<8yX05JYa> z*6<~bFz|Z<(!ZH3bXmA03A0=Jq@Zk z3S=*AcDR2SP6_wmM8J!mw{tX?nYM#$F@xKjVI_;-P2BNW>e2zeRkod8A{-39YjHGN zt2Acqq+W;I?&x4GL^wD%dum+|1Kj*no@;fjXZUn~OO3Jsc-c#$pWkSvR{PpMo0_x8 zp)I__inE7T-p*1M516eYc4;jCE!W1=TA;@n9Afp>@|(GL(?@P83jnp15aA6C4B5|I zncNgn9zQMMa2l}jmEj@6D%($9mW+7+N0Ih+tLrr_2vj2gRSG?Uihq^VfN)ZIXdoWi zFAsq68BKCGVs8C@uK3lKEi;D(;*d{(10Ueqn{nz@Ej$Q~ac7>xdb@);v$q4O_!Dn& zCsli?vjLY%S=Z{eGor;Fl^F@S;jmP@8UE516&G-|1$@ne9QN%kp#SI_Hk&;j8U}B0 z^trPmLEPR8O~mVER-Sh*@5n0l#e~YBt;3EGPuqvrIBO+_0Dp{IwYYX9rtQa6OxwDUjtSk!PwO;IW8Ca&H2G&nqYe8Y51MJ-FN#B#rKzGuI_?T;jYaVxX z7X0JQe~$$bZ>@}7iBz~ZXO-sTRx2pJClqp{3OL+1KwnpN0cngR9Q`yO%AJ{donaou zvkvTW7MopT8u}qV2c%R{kZFAfT}Nkrs1Mx#C<3|TIkOKi29X+q)1%@U8H0Hpe4gaC z8)&$Za!z0hY8?mt)mWTKqai`kg=W3Ia_1_vweb}wjdqN00_4Mp)_t`Gx`+@E ziq^CVeH@>28DUw)shN04Gz4_-fb?_sfwjKQp%NMlK~8iQQ|8_61t z8cmqAoTTTb;Jnw2><_k0208!rUBn$|9_m5i#mi@s``q;qTqn0r_Y8aJII7xTXNc(% z4^^pDP*jjLZae+GUth;f)jonTj+VLfl(W&MrV+7Tsqi;t#{zQCC+}F^#;oC$ITdRc zt>ZDs9>to98+3I7X+im*m=Ekny(+3!zmpS}1X!YA#~>jc0ZDv$R}dbz>no-CB9ldJ>$Y##*i zSs~vA02(V-Ej#kO=Q-Zmk4exLm#m?Mts9m$;!Kt?VrE}KM@NO4lw8lP2a?b&tM0XH z2rzI8Jxw7p1htNb>LdL0nBt2=zquK{^rG=AeW$}UpL@$xe*?Ledp3(ATya54tOR!1HBI|`;5HhtZ9M1oiNrChDf%2B(oXFbmex6%5GW1PWkRoXx!Mk~x65AZV z^*tjs;$;!LuD+pb#3GVszXi2*9eH!~H~a1utBJehn~w(#hWlUtXL&{flq#f~tN;1% zGPTQin(Ef;2g6T6N;P|$-oO7qS#;Tyvk0DkgSbe*sZVAux<29=hV|>w~b7XkLH)sYe z2I|pazC^bH_83*;;oEAv5T$gRuDPJsHXp1-r@iD~roe!#(L|`4(N}CQ{_tC|cLca- zi_eDpqy}UgFeb^x8$SJvwXgM5ap@3JLqhlhUp37t9Z&n*Ectcu!cVsV7os2b#o9J~ z>E<`-yHhUIBCPTKqTIcg2tE9_?wRi?AMLBFje z`bMDTy$8U%&G8sHDhvjl6oKs`ptSGGWFb{vAAo2Df*tWKuZN0@vDHTk*fRon^o zHkr{j`e_q#4S4fjHEjR3dVe<&*cZf6HftPclW@Pjzrqp8W>8d;T>C- zdCzJu+xG3qsnf|{{qt(a`jMr&bcN*b8)$AC6r#?8`w3 zUxwT^oEDI%vYC7zsRsO28+Z0p%*P7>cRe3x?o0q7&_3}?j|Y&HHZU0XJ{u8{lj@=^ggP4xQlRIQ`c`mrckU*fa>rtEWNiQVko$4FkX0Zk&C|v9&ud*URQpiIapG=4 z8HkuR#Y6lD?yMpm^t#0YgZ5sOB2k(@wO+h+v3&GEr4D(eMr7Ib%83{;U_v-6rcrWw z1#V8$yYAQiUfs{1c(@#DgoDo$tZ3z?#h{b3s<`WVPnKWfYgHGsn4GWeSD)p&zY=k) zQa%JO0@%W`D}Vgd3OJq8H&NMyruFNA?>6`uv>Onz3u&%1pg+#55-N0>cIsaZZeucc zB2fp=yR|}9F7y$MTYzNj|F<# zS`vB~3rq_&%;`Z{0p`k{{=UR`jl8@5*#W~ZT-0P{pDYLzMqUkyn$V&Yftn2R2uwW<3Tbz`F5SvUUg!aZ5l~^tOk!IY zDjkcm?!qMh{kVuAJ$`17KWK?!d~)L&sOD*tX#?Y3(=)7A3l=s%BFFEpE+#5Q&cmP% z5XAhH#4;8CZyger03Q>=?LxjIBx^}*8rHXb>fm&A>$Y?;aT}$GaL7?>_ikbNhu30b zf%Fd8SVTr{L>|b4j*C05z@+5|fLB{jTQF9E2jC9X@l*OKCKz;c`M(w)DxWeQyh6TU z1o|8Q=kFHX0I##njF0+`2RCa?eOT0}9iR_QFA(O6oB6rpvPMGC#L0^GJ?NM`v=ErW~Qh1MofK>(lXhyb=&AkqXS2D4vv2H@P>nZ$FrwY$28bz zZR2A#RSR`>o&#U!{6*I$NQh4cntY*GcP%;opwY_qP7%Ztj;`PRMDM^A*RyF_cFqB? ze#F$*vEp*q!tsTE{QO+}r622e_fMzpjyxo>80&wY{wroSVrp+=rCj*cSXX|bQ+Hck zrz0MZc&g86P$JU$Xs$itV-Gc!#ug^~;x9F?-yJ?+^U+$~TWh%Z>!e_PedQek*>G{= zN!(0-KlmQaP^s(On8)1U%+b_^L_$tm$L57AXU{slAh0>#igCj^nb9RAv}6nqMn%rC zow~DiyE$-&3S^fih(rj?kf1w7x@{xVtSU4FgCln7zleR^OVtKh`02AwpJfEfetnVB zF6x8w?cMY@O`69jFN_|mC5iXkl}Kn)D+$0-B?F&seNh_wtgCS@?&YLlV|}Hyf$X)x z`&vZ;#eGm>ZBEMAi>%s;VD~olIiA@Ty(QOw-%~5w3nv%B?B@DPF$3A?kN5pA;OT0x zeqj;1`qa&GC!)+x^M~8RclUoCOf>>EnrE?tbmE>T;r*-cR%7tgYS(xu)ou%=FBjp> zX?^hkrx&WbsGENreX{!rjqO2#*j>}Y>wE4Ca#H6UZ8~aIeBbxxH$@NmtVC4VpfDvO@S^J!_0W7P7}W-wzRomchX`$oxxx>!5kG}WPC@HL%P z;xY*}TjZWROYV0FgF6kfNUl8{WzNT|7DngtIhXtbo41!di=87(O%TNs&~N1@FErWh zml%*w{~9~U$55nb7k5?gg)w)||Ksn9{f{3Ya}d%GSX6!{gCdHcc-%{?WR9Z6z8Dch zcnd)L6Z?AshkJn}x-;-UJJ4bqI;u#7;Of4TKzaa>MNVE=abkF1%V)gV}Qdev|yt#h;3!shnHxU53~chCs21%?rEb&{`Bv zr964(RqPho81NjBr3(;Vf!Kcj4}<^LzR>nRa`LZlzES9GML}0)+*fmcfWXh*U1laP Ij2uG$H@SJ?5C8xG literal 0 HcmV?d00001 diff --git a/docs/articles/intro_files/figure-html/unnamed-chunk-14-1.png b/docs/articles/intro_files/figure-html/unnamed-chunk-14-1.png new file mode 100644 index 0000000000000000000000000000000000000000..2412ab0e78db81e9241e524e9823334126657905 GIT binary patch literal 26049 zcmeIb2UL?y7a(k6kO0yZL^>!aQfw4y5frgd6jVT}sGu*>OXvyBMzv5BAvQ!n0Smn( zh)5Gq=|Uh%lNN%M0BQe3#Rl&A-#y>%*|Yn_fJ)}MbLaMZ=gx5Xu#r9|`+D{jD^_qG z*uU3g#R^vRiWMtYz*mBwdJw(VJvwr>h9Xob_am-Q7mxH=`oVtU9x&!#0uO8P09$*e39PQ5G6p(`J}twYE{_2-+1&P9 zc&=C>dXf1Bi5-|cvtotBiUWIfj{4pnFN-W0>##^Si&i>q$K?z!@7L`ZFI4alUe9mv zdJfjL;ik%tQ=y&^W8LCDA6(S7N%ynK6~v^;4y`C-@vflHk@W7)jS3kFnJ+dd3{zfc zKbfJYrc=hOOJ*$*K^uqh$I?tv{?Ua?hL5G1jzGhCboXD@!7={|m9PUp-k`&?RWh9C zngl$FM;Cs82W9|j7x8;ZXFC5K+m$}L8%X4C{tAp-j=!WjL= z?^T|O!$j7)uBE&Wvt^7jK23wOxGJOqFjnG(X<;RBx3Ij(5IsLTj#xX!e*vmPSyF%PDy5 zd>$+IOY}tWkget%H$A7N>^v((|8(w^py6QsS=nADssz{4S_wNQ=9q!up$I0NWZS9Z zk8?^`Wo%KTtc(Q_X}FqH*s-xgn2D zeys%I5Bqh9H5qQws7jRqTcM&SES^SBw59vchf zX`9E;UA4B0!Om~#9efl47IS32p7H1iF(4m08611cG?4{Too-Q8+>T}} zNNZMa7XtIZef!3qsA^v6@MG!&$XoX?8i<4Q`IJF3lLD|R5q=bt(~Qjd zTdKE=Sr?ZOKRDgQz@^+S&=QD_B2>kqX6-4Q$DmjIr!J4n%Uj^YGkRasg;OayFvr06!$xb)Ca{ay= z;Onb`F8=#@GFmoxcJAp*PPwhao1?m4mGb7Uo0qw_b2y;dV^=+1;6{l+?iyr*MD7Eb z6G@v+7O_BMbl;l_Tt;v7y|;DM5DR4J@JkO4m`KEfba_6=A=2KHs~b6>jd#Nb1mJ4y z2aGK?Koba;U#`0?2)n(9tzLo0ZOygRXZvCD75ov~)Rf?A7x@w_B?y}~Xq~wVHxHF% zKjmh_Q$8+uZ9Y^j@~D*SYCyKdxm zLm~Q-!+H6D@yF7V7f{y96Zjd5%Js zik7_YdC5o6rP5^)-l2P#WvPHYgFlV9!@g9;PV?Gx=&X%fB4#yGuLMHnB$i5=-X#Ut zvE56BEt1C)EMcj<{dWQ1Rs6pkSTt7uOGQY7eQxq}BQ&*qm1I~qT+LhZnq@Z2?PBg) z1x;Y41tx2@1M&T`DDS>MEb#xG>`CIweH`AvCJojs@Qxp%@rQ@_uhM>Z%KtT+-@}Xl z+Wo~q>HjUqH3*ZJJ?Z%p4q^el>Akp^--FKoh*U%zfYh6J+};Y}lheFfyt#e9hrs`L z8sPJSq!J~(_x$IAk%e(VC0lOSbD8U*33`88V_hqptM*>p)n#bYpBfrG_0iL|oH103 zudYVLp!X~@>J==Iv3t&Q2qm7!i0Xd-N=e%89UnQ;5taF&8n`So~i`J%CYX zBayae8A0?MZ4{DRlGD@k{-`ocKJw29HR1-^7O6z@skX~gcX6#4m^|$Q(+u*~b%EV3 z=BZU^hZ^B8_6tZtu(W#tgY&g`yd&x;gI15E?RW=I`V49?1E4@6ED1rJvxSsv@|9}| zM5f>QwmLud50hULCu5zj>68!zOL;%Ac}S(~s#3wuNebM2oyA^b*x0Wr7Z@{7S|}AR zNR%LesCk*sdsBn@8ZK%=ZP=GOMBRNj+Lm&f=evS~`*0w*es(Dp-ti5GZ^@e!bhfd4 z^3mFf@yM5OHTW_R_TpTz9asWouyU#^E;X1wxK17>5-ukZ`S~(h^p})PQp%3O(%X)| zD2cz#&H=f2hrLG1U&^lfm;CP%+?SMkKOGC`-|d(q&X6K(U1mi^vC_9Wpj^vn?N&KL zGaJNJ=TAX<`4DYP?hFhY4Ce*${hx@PG{L1`4-Z*BVtDxo-NbM%(^=k3=z{hCArq4;Pl#Tn zA{(`wAbCQG)JSx}67n%q@#Ui1moLx-LjNhe6bOcY!wb|LmQ4)XVBM60cu<78_@@Rl zYZuFUx;|)+z1{Mh233fEbn*HsmzloCjY6u3!6Z97=^*1$R z7QOyeN@EHYn{wSkAnI@X8y99-tmb2*Pr1DPcX5k|9_|>`k?-Htbs{U_g;(f%SN%J! za~FY_J(Ugri>3NcNxjH^+`pgXYc4)W3!u;M3|kW~3`tkq>rtPFHYH0IRlS!c0NYcf z;~C2=SOKB+`|isl^uHD`KkbK>V|CyBr%GcN`P^>*#jQah)elxLTOCWfv3&LI`u1gt zWA5@0{lD9IgSzGGV+Vwmt-o#Cyl0vE9xK0_=*hnt<>jBb04v2|;l7efq8YfF%$a3s zd7sWgv%8!W0Av1=3@ks*-=MicT{uhoS1lh<{HG|d2~k~T(}63_%9&EAXc?ij-zAJTZGS{4YV6KCYe?iFRBPE$znrJL1PdZ5;lkxcr5W zf8&&hDK7GFA>Y3Rbrd%PU77s1O8CE0l)p^<=@Hb%?mt72Pr1-k)!gNsT@tU`4d97a zFHyOA7`4qc@H4BWtJtzJzx)~!M|yLB_DrRrs*(c1;xE*w+77`^#W(Mopxx)>I?j_z zZdm6P)P6aYeVMdS0K1Ax>pd?*J%oBOJIL#{%r=AG8y$00m-<|ot)=%ATy2?Bp%ih` zXC!@=-;o6|m9h5X>B}62s6G?;`d)X%mq%G$#=(7X! zgW`-fRN>$a5W+6Q2>W5vw>`XO?=IRFS>BrK{0G=QE*-NQx0h88b4h|YA`-24cWH9@ zhJ7w@#k99nEXt=~=P^!5z0{w<={5#@F4_`;^7oA{uq}1^^3F8{8$ceoh(u!iW@Zx} zW@^PuP3YkqS60hUwMh~nYQxe z$}droEjBC5Yp<8Y+Lrryk*QfT&56WR#=98>!()+aNgLt5tCxtzTGu_rwf9S!W^A$Z zZ?(9BiS_MZP0nTL2~Lqvqi#aoa@cW%@Vl2%uE}<_hDv3m+G2Qr}S^b$_ zY#?&N24>&`HpjpAm_TzNNF_>YY}FT7AZ_1nskx_>UMsWnCt0xzLgqCYrL36 zT^{Pr2eQZ}#@T*eH`Jkzz1=c|xW7a~x`%N?tYvUtmZg=3$o+twIoO4vyBOt0JY&;Y zm}ck_^|OaC`cd;It+6wgn}?@+5MopUJ~42}XMz#!FTNF;uFW@V_r#osG3XLN8*majBfXeXxl zNaIep`g@xRN0xC4-_V?scudA{qqLLBgPT5sCYV3UFkk1Y`cfd7GBv!Ag3!#14ZFW% zGeLo_hb#D1YJDwuNFN01jbFKA$f~UNT2sTvRCDAA+x|K)_2>;->Nuj9G4!N&j?mt= z)Q*y@KG2i^HFQbMaSr!n37$Np6~F3n6AQ%E>1rfeUktj`{||+t3-T`UlCZ;H!jx5G z|15rL3c^aC0K?Dd=Qd8P!CYGThcPRXAUG=surrnLHA|q=QtwalRV>%Tb)5jt*9kaZ z#-v#ZwP@~U?jP1kj2oKp&(rCnHyWz9o@f8lQ;_j5M%mYe%cSfw1h!!=yii!;1PpoH7Q%9m2SMKx5?&&7 zaqoZSTp=6ONP$4Ph{Hag9BgIjUe|GdX#$!oL1;17K}{AIr8@@CUsuFBPde|1ckKC9 zHNh-j!g7rUjbDYJwSLv3ZWu(Gu(2rJcNx6-VYe5Q?LwARUR8B)@O6;t-&~#yyyF78 z*J5T@I9?$FwV~e@*8N*~1bmK0GiFtrl<4I%!k81Da4)SXxcR2ADV?PP0#?)y4IbJu z{?5#`%*}tI__>MHpK%62qLzhP2aFPf*om2sMACg(ZY4WhJA zIT`4slS?o+gnOAN*Jb-g!fZ+g-1kgm1T=UcQ1LAJ=Kh=~l=F5lkw0pyGAAMAp$ofl zqbFVkuD`}lip9hucv=702QUnU`fvv~afk7eG6DZt$6%#jDnpRGZUeN<4oiweE_{5X z3>4#YhTmsT&ob&hN>Fdf|cHILA>NpHf*^>AkA=>35n~ZFWtSKP7HGyA;R!P;KwV z@!3+iuU=#X>q%u+n>=WF;!}KBF7^4zn@a-oJT=sEbScWrvHuz-b&sC>uu>j_To_Dntc}USut`ON9q=dK(`}LTrWCL7MW+eR>H@2$~jJ*Lsz(le}Tvm;3HEX*qL{m&Ky!w=k4Z+)EtK^QFXj2)9C!|9TK zLn!*>^9#&HtNv!W4zyyY;1G_2OY@q9r>+T(`jCPpE;a2e#CFVY1abD{aoh|J2lvee zW}jOOA}p92fVj29)Xs?v*}@*bwV!mtO^DOfrIy&znJO&Y{BD&l1naII^eE^fIRzva z7#q*20QN$^jW3rJ{Kn>yH_@!C_TfAg5>h!9;wdE`6Se1SjZ+cab9=H}mZWrrJ`=#V zsw*V0&rxw?9t>*~der3SE>Gd)xf|#pV1SC4x*ixjO-VI=vasQTzas>*%zg;b2qP*0k9g*Lp4jt@Rb?GC8oUamh@mwf9sq+}AzQiX{*`nDmEM zn-rs!WbZ`rxw$e~wv4RJ9n6lL1tFpz=x_X^47Ns*a2F*F>lOkUwnO3BTDKq*^Bccc z%GPWmMD8eHo7)-w#CA1Ip8pRUbVGr#h4C6*xDQu<0yNwH8MxbC_ULK>+X?2z7v<`85_ zV?4!%)kFN@3+HV-xdwdjLdp)K^FlxCj=TpW(5|2fcRWD!k-9T#3p-Tc*EmKugNNjN zaIG7PI#L(pil?bVQ_o#3K;vtzUM1Z9N#(nR4Gx*zR}6;ad{V0{O;1b*3h3yi5 zAmyHHXq(-8l`EU?kk%Z5hctMb>L}@YJcETvqH70nP*=TC(;wx%Cv-y;^0SICY%JXX zQj#7W;qwaao2f^H3iv7cVt&xub;k8L+*ciLZl^z{#o_n-pn^G&iR&pW-S}3%36_ap z0XAd?Jk6ekS#g$Q%NC6AukGM!7kC+4T(FnXV|kUOAkj+`VT5v(vn+u<75*@z?O4JDQ`c5a7Oh+o zf&7V_sxNMJ8A_zjUh87BHDbe$$DjI&R2n)hA@e6nfeoYh-ZP92#HVqal|<1onhmvQ z>N8+6pT@_J^>t6b65I&q!5vb+SjsM~YA@}f9ZUIVbTTaWLJqsM9jx>pSu0Mi$1&DS zg2JH0_7F}Kn)7D?R-t@wW~A3eczj2Li)oQI`v;Vwe^r|&5Q9y2CmFL)qH*@x66U(j zv6L>*#eWv&EdhS5*q|uOWBgEJ_RiVSd-wz#kK1Z#x>@GIL%7y~a|s<)yK&nOY$h!1 z)GQhPaAwnw61srxlz*#h>xl-oLQ_&}j#6hFm$n*AK6lDFFA{x7fYi!*{)zQZb#w(p zG^5c^9tg_gZ8L+;8j3z}9?h44t6c$%k1s_9K-!7MYB0_HI#6v%g7dd_Td=U!OqAbD z0TOsqC zc2747zpr4uh~DT^PQ-X)R!5;DuARUsLwi840qD48jy@j5AZ7W7pi5Za^u1`n3xJOQ zZJ$tj71))KoX&YEySp0%-GVHN+7$Qv*jOl-yG74L1T!&7{!JKTU3APG`;n(OL3(Nqv{|qxISxWvBP30}ae2Xcrc1McLKb zOW56fAm|p2R{hpL45n!v7)Yupf$l>l7IYoH?+la2rEJ{5mwO9UqI#oxB9J%tFds+Z zy#1Vz(&W$m4FTKdmNQC2!CbD}`nuk>3Max!6yVSp`&W!B`RJ_CzPSYXRnP>spBWdJ zD4ubG_(p)g<3i~U5Bcxhj9(8)+(J0iCVHv;7exzf$VA-olkxVwzZVDXw$NQa`gxx0 zaZnj>&mC&xDPi-ARUop{*4uigpGoO58o3<(9^vmFP>=+6F85J$BnWuRH8KQm{g>pQ zm=9(jo`8`vRljaTC70*|y>G1!eNx-H>w&6IBpaZ~UdC%NXpG8MsK6CoNX{;v z9OEBcRz*hC3A!O`M_MY4k9_D*kYS1|O&IRW0EZ5K?)3C@ug$c<_0$(+HG8-q#C)w6 zQIH_eEN{pX*0O$@`E7-MvbYcBv=+Q+=US*ueaglMxs8hSXeJ83I1e!ShzC?YWIWx6 z)l-r%0|-3}%}#i%)xeYzP!Feu_y+y(M5RSrjvg{b=WX&P`#fZaGqHs5iRgdaO^o@S5KA(7{`y&1vwu+jvLL;LMgScV+0TA+Ax6Zu$5>5^{05ka(A z{`p<+-LTSBjYBmSIB%p}(ix`hvfq!(;X9Dh4Ml8u6Cj$*DqNiV@@7cR&fgY8-xH{(D*1IO9eDL*#C>Uph74)# z8(a{Ms#|Em9Ei=YM6E$Uf_90rLTxHjHjbT386@t-ojY+uju0`#TX^tS8Xf$&h9i&s z@q%UXSAk8id74RWHqA&cY8WW7g~@}HN{i{ME0KMDx>_bplzhQu8#vMwm1gEezE4%> zv-0F|!`QO~28e|O55RvaT=IO;Oa8Zsu}5!hBi&^+i$NnbpjlsRN_XSDJDJvU)3-wl z4^fXl^=iX?IgtryH03KPWeCabImO}zKTUozH6t4}v^tPbkrIX;FqO7bV&RzcZ+}O# z`^AE`a91_%7OIZ=?Uj5RkDOis&8`<9#fOyq25_$P0PShRwB-o5MxhGa zTmfEq;3HJqIxorM7wg~uEEDneZkqt*0^9 zR98dW>aTG(XY%HnN3r`BM&9}Z4GP?j96bU8gi}S&!=bQJk|a~}4?t`Y`+moGJ8Iy# zU@pZgISt>YvQohVy4x+S!IouFpTXs<8`Rboer{+vN%JMwxezuQ3E(bOH5*cw?+YBf*Av$Tj3SL;QM)|Wp6~d#_F1qKGsV;6?x5dj~ zsL^omMxd9^=N+=Thsp!#gAEs}`GKEH-2L^O3^L%|IV7m&@TZRFpVZ-XTYZWy2TbF^ zt?~p=W~WUR2QQe6cFQ8g#j&@}K-%g2KEH^7i_-e?N6+f>TY`x1&lhkmQs5egFMT&C zsb5Fh7E@l%_ZHZmrw4hFizY{f1WD(7D|~;ddGevsl#%(aAeD#B9m8r|DutsGcHn?q z12mYTM?UX)zXxgi59YF1QQB51Jib?TH*V@%e1f;SwigHRd;@HQjNOES#O6@+Kuo9$ zv)8kU(K<9i3?{dNjSPlEaS7u+!Q(^dFLE9>kx5s;mAD$>ht)#y`HD;t1EfBv1okMU z2@!sjs;N`G#C4Bn&kfHCSc$P-A0v|2zcALlsKMu1#OpSqJKUVzb{R%h!y0}*fyq)lkGQ4kKcN9iEZvcR(CsI=WRi?y+t5<@qu<+${Rr z*4MU&1Xn9RzwuLJ2I_sZj0z+r31_-3pwJ$_HJ-3OXfTa9LKspNx4~SlEJbgDX>xvx z(gy0~W)x=@;%?nvtr*wMa{B`|e#_Nh@JJVwKA4A^U~4>zG*Oi2nT>`IA0)gNyDGtciCsBfW{bzX?sUbvfw#HE9?X@k#QCHqg@ zKVDjPsmzjnrAZDXXx7*GgTmq_PNEX8+Zq7;CWqQg-KXtEU3xfAKRlvmq~YRFfut6V z+OQ2wu-MKDCg`V^^?aW|Ob3_vc-Pti>%^(B#eUUMI5c&~Pd9~}=Y!}^I^=|)k+m%@ zf{>>ETKsO@O!L&mm8jW;$%&IN&0Xjp3ChHmGzf&dNx}C<1JW-mUw+rQU1?BX>%|I~v`7Lx^ws$*KN{JQaQo>)-rs&UP6> zy^}xC)3vbDp-l-q0E+vbw^l+fizT=$9+G;`m@*H^MhEB2E=bxHjqXy){+Y2B#j8yE z^qG{X?p1DOBBNnmUAORl<7uYFhKXF-wbUjRtWc9pns*xu#7^$s8Ft>Xi)Wp}E znsaUqdYegk{SQyB36~t9V)vp;6!x@1JmDxzQ2#p9YU~p(DZAz_ySdY38_e=hj_XJ52sY zC3}bPVl~m%l7}P%^v{Fe4XOXYX0uEf`k2RINISeR4Dg6_!AmKwL%@w+2)M;fuSs2X zjPSvh(aO_2xd&t9?0RwEm5abR%*DGG=j8Xiy~Y4XOXu8ZBl^&kyAdCXj_|O9koPPG zjjsFC^8kZigNEZP+o<^?Ea$c0<{K}r1ue)f^1lF6-1iOGAzU>{3EEcc&SE7^SjE)9 zQBU=2XxFB!a!>$gf>4h^vpOp2;dFQ9qABe^mOt8zv16uU%xFs%4n1C5!4kOMMq-`k zxAsI|Z$*vGAo~I&d<+ZZVHBGdNZ5T8Ie`;gSJ{;>8*H&d>v9#UQ(-H)B2!}MUo7F9EQZB%& z{Q3%@1&X#(ga#PwywvZI+OVu2>`Gfe-Tnbf;0A`2UCL=GyLrgX?}mj*wvh(AV& zwpFT)$z`jcMsW|_UBMLf8#o|NnlKgFZ|BIRJuDa|t}Iz5(u6ABo?h`fP%W4BgPT|2 z7HPFNlP(e7B3zN#LUXzrz^z#G4Vq_PCW9KogeMF+B!20P(YO9o{Rar)u5G3O8Zc(& z>Nnx$^!;ZSh2}^mk*#~r`2HLd@`OI#)on*Z79WebstG$e_x)zI$02?dc@K!qLO)%X}X3n-B zj4J54eaH;p4_D*)Fr=wVP5Hb$xp!Ocft|5$%uF}&rld*} z_sKq+W!nG~sZwK1bZp^*3K+OR1x$0lyL!#|I)1kiZ=0QP-xvv5LJN5&p^zm`s7gh5 z71-r47@_zXHm>4Q;_Z}V_8;w6Cudnus-7b6OYf@7_f#OX1lfC1*AA7!GSVLji9vFr zx}U!t6tlPh0w^(vaoUJ2T!R`sEjOAkDhB8@av!lm`=UP1q}B*$@(Z5x`u9$+g=y~D zjkDgMO?}-c>cI~y-R`Y0s`B#E;$z1Z1?87uw)!fdBm49#IA#DhQY?pJP%RmmV}#Y(?&g$SDpGXU!6J5 z30Snm^t#Vu=iug27VI5DzP|#&m&?vv$>xP=>g~qa@Z|3Ovc}DcU>LS-kxB2x(bxR- z%nndp)^M*+uZf2JL9&q#tnVoFb*mY| z0@1gr1yNqM@;_D}Vl)T@-!we>5y6Bx9UJG3Olq2MSTdw0>S{j=h5L!+lSF@E)Qb zW6~MF{fYR{!*eRYqH2wYs<9vs4KReSe5a+zL6sri)vpy~pkmTsZ8Y5{VvA$(p|`1m zVKmg9MJ~FU&alE|t&)-ZpXb7TZ|Aaor2A^1ZY~%J)Sk&`i}9@AX$ghqr`Ct6t)vJV zaW1;Va>G_JCGxgEKfdMZAMfswYckYHf_usW+k|ZFdFt$_XmYM z>qh0-rz}ACiza3@tt$<`^LVu9_)aCz0Pv_VZM{g;+C`va=_6c+GTHe_FU#bhsRpfL z+L#66(LX>oJl;FpScO56bz3-%X)U=`)?LAZuEV2 z&z?_{gh0gQ@Fqpgrc#6zd=N^;b`+ey?me)xq|=JVg#$tbmz-V~eL`l#;d6(F6Eb~P zrLJGpr?K>ZxY3GA@VQ&LCOGdHjb=q}iUg`b&5YW(_8ZtdhS8Qqb3faxEnrYad|2}g z&qSPJU^!A^qLjxFn=f?FP8$6FL=j5%ho7OG!`K}v9g(Sh<|x4Hw)Gf;IN5?s^J&v$ zi$;$=W3e(U+q?+e#ne0Jc*`yq&M6C@R9l#cK`S;ubH+L&ML8WrLf$8#!As#pDQgljaiEA;+DePMWS7_KO%CJhz zRqlSBQmh>8)_c+36HG)L)*U#| zSpUxU?BQ=FzhE#9tLk>6`CWxF(C}yP zE8c){JP~1;_{#%t21g@9#Csd?n%zp<$-M{~@$lI5pg zx@VUPYeJ#gUatk7n}XAtH$`Ap@xfHjV!I^1{qWpiuu zrbNtnI8^%rNFro5Dtgy|HXI(CGE#dy*!pILuquj_%CbR}n%=Pl&UA{rO5+k*2eExW zvD2j2@|-C}eEQZjmj!NJ2@fRw5OyrR`COrvbBZ!lMTSrjGy?0!@J6rpOnvt#gx3vI z?_`!S@#Mv@LkQY244u=g6o5~;Rms4;RM5c*4{%UK^}N<KBaI^|9pkv8qpoElPVIF^1aLo!6GkJ7k9gg# z_rZPVdY*-EY5r(J5l^u$Mo&(JMrqlcduZ_l@n|hX@b;`rk$l&Gmi@IceC+_#DaH*Ed?5+5MSC90(hwc#w~Mo;x>V`V8&2;OAcK zZtZhDv59e`WY6)fuNC*=+B|op4LUKrKX!#k+3`cQpSItq_e(g#p0sweVps+z*B##C zJ#E{WBlTZzDMX=7ISR4H@1N|P*E>;B&9ikj+CW2vL8+dps_2@CYekL#(#_=#%OZ;pVvD`n zudzYJ8fu~_Ps$wd32*wU@1_U7nmCp?4IO+pajT^rn(fjgU-*Tq(=9#5`Vu-8;}G61 zpzSwmiA;0W!QC&qH9nAY=arM*g(6Ri;Vb3DEGHLiZTVoDx1Qb&KuEm5dL1bKRO0Qxw(MQi zyreFro|LI~uJ~?~IiyMN7S^WE@GcHVt8QD*13Yemu4kp2c6sf=yK`=mn{lfuFEc*g zlXdEVBw^~B=4_(k3~s7!;K}?pWSu*V`k6RyHkz)4*J9is1seuNBb0uEh5E~Fyk;Qa zaDj=CvQd~zy-lZ+Mg#6(Jq1u_JI0hv;ByXr2AYF!KE)Oa`ze>y0oUWIeO`=GPWuF| zwkS^{DW#PgbEOvYs$@U>%srbcqkFks~B|^Dr zx0J2NjuOJ*_z4w{lnf1@z?n$vs(u#DGJoFrmdce6s%;M!TOh>{JwA%VgnuOE2}oNH zV=e4_ZUFC`V6i5bOly!%u@x~Q&;I?vwKmS+l8mAYTB+D48SDGulc3>i;zLzd$MpLA zb1WK9g?CjSfuhPR>3eBfDvcJNuyPen~`>Eqq?%S7p!EJ-n;t(>p zK*Q+_{BO5HEx9)^;`04F9K6e2Q5Qj_pb@Hb?ImfKd*${ld-H=#WB9R4%U=5OfQ3pt zgcOg|7W9%__OK}rW9x z8UI&YBN-{mVsOdLyz-I<_;TUdy6d0Cf6wxfj%Hh$b84Nr-`@NMCXd`<-RPm(*=FH_x)4~`Sm{F2ykz&?*G4Qfxq1* zT*Czo{(dS>+4o&d)AiHYL%lRQ9`DKe*{?B~8^d_lQSj*zb zp5V#sT7B%=!e*tH2D`xOiPFHfp=6-*_oVMs=!WRNL zP$eIpyqXy&K9_0Cd)qxV%F*Gxoi4DW@NECkf$i;6$>VkN-HE1aMYgOh{2YAhpdz6t z)fk^W{k$s)oVp_lkPQPOQp_F?yO@;}=)BuGKzHsUoGK7LxlqAb%&AgZ#+n}Y^hv9& zYTNmBUldk#wYqG~c0pp4-LoS`Qf+N*dC zTvCThgA)U9dumM-kYmeEU?~i}C+!7qrZDRhBU8JB0-vEB28;9jrcORD4ZC-s4nJW} zRPrY$OADX;!kk|9>+}TQF7H#V7w*2ZzZh@llHBQNc>CPlk|8reQZhHb@@oCU&TngN zo}w$x>*52O>B;h*Q|FcTD>0Yay+HMUCFbqZDUJ_v8L7Kv;ep+0>C^mH>DI$;>4FQI z>N!oD3ubznvo#-x6^0ORi+|p)MKs?bv+rH`611sCi%{M(F zZx5?xT9Pl?6DQjm452PeeT_DY>z(o2c#d$$(=(3tNm9pBG-J(UV3PUn@#Y zzH|1PM_KJH<&6UZyV}P+ z%9_RzY7ybDN56`RZ)A{IV59R6%HzwC`P~bTpkkd#s|2H6&r=+;9g$@%#_>v@=lkid z9sSVMQ9t@bFP)4;ic_$v+mv$J0!zz9?(Xp2S=zM8p+tF@-Z2|VjC&Nll}3fT&N7T?nm41|8h})Nn{OLu>n(j}exWqKB+8FVd$qZybbaer~hQ!IOLd-E{lL z+oF|$$VYa0BXjtA#vk&NI^J&?pGU57Be&Fj6F@6tWS(qB0d+pLVaLVmq?`&ic|B>FgRSlb5 zQseBa!EGdYchYC{^)1dlfMBt&i<<^r0+%tATjQN#druy~ z-Pgi+p*|u`&@T>j6u+OyqBZo@&fG6nI3(3RK6@!amLl?4%vUkJ7Li9@GkwQ0pkn4i zK{H_u-?|(m!Gd~0ve!Pa?hf+T{mv2+DYu}MMJoh|a zx+E)$)nhpIfT&LiZBKA|deCdfNo2!2gH^UG#k`!#%Q{JX2-|$gkjYt&7hkzkZasb& zaK{T;ZsA|1h0xb2kyk4=CtKW&xH&xUk5W&5<+%Fh@bI`>0@=zRH#UB?Y{BB~cz&%7 zO4jhrCm(48?ZT4<{^u(X(OCxnoglaw0O(L-{v>NOdZhc{erP%zb?@+IqU?b-hu2W8n=t?@Ozu`m5RX zs@dwht40D=Z%s&aWO$EJfj&{nFp@;m-=SkF) z((d|xQCl%{)lvD?Mw+z1D{Gyyy9jGI!tQ0%r8K!wklbCYH`xkmid@1tT_-9wpY|%P z^p^Gq`Z0MLbLwe&0dp}$0>uHrH11QrBSCH9l;qjrn)FW_5RdGO9m(6yk`GY(+q*TB z9|)4pH^~xL>f4LeMQtq^>P|*j;8n$gW)|u+PG@&@oGcf|k470u4|F@0zDO}~x!R1+ z{${hU4v0P$c2ZeAFHq@?#PWr8;epw7xm!Ba`*8}5DG%(W?P$>I!Z-Kmne}dXa~hcK zOynMe!NE?tL=jrBdxHDEv7FjVDssq}IJUK6s3usY;fiv*GwEK>owK(*hNcu|FzU&` zsEzrQeH_O@xo+Tj9Q)`D=ZL|2O4QG!D-5*veI58 zV_X9@5**3%%od==8XXW{5VWeeeUc{FP}K)57bH?jCM=yxWFJywU$99Aut4}d-j=@G zG(Fa0Ozz#O?Q&FIkzi9eG+Ksj-YU64j|rop%&JKViuIZ4n2BeD6ts-yrN5 zG25htnpjzGp2%KE@9Oo^*O}V4LDz>1D%1bSZ!{u+Y{ONhj%Ay>&gkNPm>N1Ou4wy( zrldloPp9J9B;iSMeS`7M7d0x2k&>+y?Py!~97rrie3Yuaq4Bm}O*xaODz3MC$Yrxa zpCc_M;x*Q|QR3P~MQ8_6EuK@tJvtVp+?V6Z08@9J@A3cWNbhR9BM8B&_;MCvsnMon zZ98Py?A{YOeiJsIc(+PYz;*E+-KFobUZbg@bh<22>D=uR8{u*+HOMxrcmBDfG3{n< z<3&qv<6XT7-QYoFqwL#-l{PD7PERl?BTNSMJlCL?q93Rg2l ziCD~dIm7K)n#6;*%(2P!+m4gDJrHkGk5-nAbp?r>^qda}u4e3fz&$69nr_6=&v^QJVF7*EcFq}tk literal 0 HcmV?d00001 diff --git a/docs/authors.html b/docs/authors.html index 363b58f..ff75958 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -88,6 +88,9 @@

  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/index.html b/docs/index.html index f5a3217..9cf1f67 100644 --- a/docs/index.html +++ b/docs/index.html @@ -59,6 +59,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • @@ -81,6 +84,9 @@
    + +


    Disclaimer

    +

    This package is a work in progress. It has been released to get feedback from users that we can incorporate in future releases.

    @@ -91,221 +97,33 @@

    Installation

    +

    You can install the developmental version of serosurvey from GitHub with:

    if(!require("remotes")) install.packages("remotes")
     remotes::install_github("avallecam/serosurvey")
    -
    +

    -Example

    -

    Three basic examples which shows you how to solve common problems:

    -
    library(serosurvey)
    -
    -

    -1. survey: Estimate single prevalences

    -
      +Brief description

    +

    The current workflow is divided in two steps:

    +
    1. -

      From a srvyr survey design object, serosvy_proportion estimates:

      -
        -
      • weighted prevalence (prop),
      • -
      • total population (total),
      • -
      • raw proportion (raw_prop),
      • -
      • coefficient of variability (cv),
      • -
      • design effect (deff)
      • -
      -
    2. - - -
      example("serosvy_proportion")
      - -
      -

      -2. survey: Estimate multiple prevalences

      -
        +survey: Estimate multiple prevalences, and
      • -

        In the Article tab we provide a workflow to estimate multiple prevalences:

        -
          -
        • using different set of covariates and outcomes as numerators or denominators,
        • -
        • in one single pipe operation
        • -
        -
      • -
      -
      # crear matriz
      -  #
      -  # set 01 of denominator-numerator
      -  #
      -expand_grid(
      -  design=list(design),
      -  denominator=c("covariate_01","covariate_02"), # covariates
      -  numerator=c("outcome_one","outcome_two") # outcomes
      -  ) %>% 
      -  #
      -  # set 02 of denominator-numerator (e.g. within main outcome)
      -  #
      -  union_all(
      -    expand_grid(
      -      design=list(design),
      -      denominator=c("outcome_one","outcome_two"), # outcomes
      -      numerator=c("covariate_02") # covariates
      -    )
      -  ) %>% 
      -  #
      -  # create symbols (to be readed as arguments)
      -  #
      -  mutate(
      -    denominator=map(denominator,dplyr::sym),
      -    numerator=map(numerator,dplyr::sym)
      -  ) %>% 
      -  #
      -  # estimate prevalence
      -  #
      -  mutate(output=pmap(.l = select(.,design,denominator,numerator),
      -                     .f = serosvy_proportion)) %>% 
      -  #
      -  # show the outcome
      -  #
      -  select(-design,-denominator,-numerator) %>% 
      -  unnest(cols = c(output)) %>% 
      -  print(n=Inf)
      -#> # A tibble: 25 x 23
      -#>    denominator denominator_lev~ numerator numerator_level   prop prop_low
      -#>    <chr>       <fct>            <chr>     <fct>            <dbl>    <dbl>
      -#>  1 covariate_~ E                outcome_~ No              0.211   0.130  
      -#>  2 covariate_~ E                outcome_~ Yes             0.789   0.675  
      -#>  3 covariate_~ H                outcome_~ No              0.852   0.564  
      -#>  4 covariate_~ H                outcome_~ Yes             0.148   0.0377 
      -#>  5 covariate_~ M                outcome_~ No              0.552   0.224  
      -#>  6 covariate_~ M                outcome_~ Yes             0.448   0.160  
      -#>  7 covariate_~ E                outcome_~ (-0.1,50]       0.182   0.0499 
      -#>  8 covariate_~ E                outcome_~ (50,100]        0.818   0.515  
      -#>  9 covariate_~ H                outcome_~ (-0.1,50]       0.0769  0.00876
      -#> 10 covariate_~ H                outcome_~ (50,100]        0.923   0.560  
      -#> 11 covariate_~ M                outcome_~ (50,100]        1.00    1.00   
      -#> 12 covariate_~ No               outcome_~ No              1.00    1.00   
      -#> 13 covariate_~ Yes              outcome_~ No              0.0334  0.00884
      -#> 14 covariate_~ Yes              outcome_~ Yes             0.967   0.882  
      -#> 15 covariate_~ No               outcome_~ (-0.1,50]       0.218   0.0670 
      -#> 16 covariate_~ No               outcome_~ (50,100]        0.782   0.479  
      -#> 17 covariate_~ Yes              outcome_~ (-0.1,50]       0.0914  0.0214 
      -#> 18 covariate_~ Yes              outcome_~ (50,100]        0.909   0.684  
      -#> 19 outcome_one No               covariat~ No              0.939   0.778  
      -#> 20 outcome_one No               covariat~ Yes             0.0615  0.0148 
      -#> 21 outcome_one Yes              covariat~ Yes             1.00    1.00   
      -#> 22 outcome_two (-0.1,50]        covariat~ No              0.549   0.294  
      -#> 23 outcome_two (-0.1,50]        covariat~ Yes             0.451   0.219  
      -#> 24 outcome_two (50,100]         covariat~ No              0.305   0.188  
      -#> 25 outcome_two (50,100]         covariat~ Yes             0.695   0.546  
      -#> # ... with 17 more variables: prop_upp <dbl>, prop_cv <dbl>,
      -#> #   prop_se <dbl>, total <dbl>, total_low <dbl>, total_upp <dbl>,
      -#> #   total_cv <dbl>, total_se <dbl>, total_deff <dbl>, total_den <dbl>,
      -#> #   total_den_low <dbl>, total_den_upp <dbl>, raw_num <int>,
      -#> #   raw_den <int>, raw_prop <dbl>, raw_prop_low <dbl>, raw_prop_upp <dbl>
      -
      -
      -

      -3. serology: Estimate prevalence Under misclassification

      -
        -
      • We gather one frequentist approach (Rogan and Gladen 1978), available in different Github repos, that deal with misclassification due to an imperfect diagnostic test (Azman et al. 2020; Takahashi, Greenhouse, and Rodríguez-Barraquer 2020). Check the Reference tab.

      • -
      • We provide tidy outputs for bayesian approaches developed in Daniel B. Larremore et al. (2020) here and Daniel B Larremore et al. (2020) here:

      • -
      • You can use them with purrr and furrr to efficiently iterate and parallelize this step for multiple prevalences. Check the workflow in Article tab.

      • -
      -
      -

      -Known test performance - Bayesian method -

      - -

      -
      example("serosvy_known_sample_posterior")
      +serology: Estimate prevalence Under misclassification for a device with Known or Unknown test performance +
    -
    -

    -Unknown test performance - Bayesian method -

    +
    +

    +More

      -
    • The test performance is called “unknown” or “uncertain” when test sensitivity and specificity are not known with certainty (Kritsotakis 2020; Diggle 2011; Gelman and Carpenter 2020) and lab validation data is available with a limited set of samples, tipically during a novel pathogen outbreak.
    • +
    • In the Introductory article we provide detailed definitions and references of the methods available.
    • +
    • In the Workflow article we provide a reproducible example with this package.
    - -

    -
    example("serosvy_unknown_sample_posterior")
    -
    -
    - -
    -

    -Run a learnr tutorial

    -
    # install package
    -if(!require("remotes")) install.packages("remotes")
    -remotes::install_github("avallecam/serosurvey")
    -# install learner and run tutorial
    -if(!require("learnr")) install.packages("learnr")
    -learnr::run_tutorial(name = "taller",package = "serosurvey")

    Contributing

    Feel free to fill an issue or contribute with your functions or workflows in a pull request.

    -

    Here are a list of publications with interesting approaches using R:

    -
      -
    • Silveira et al. (2020) and Hallal et al. (2020) analysed a serological survey accounting for sampling design and test validity using parametric bootstraping, following Lewis and Torgerson (2012).

    • -
    • Flor et al. (2020) implemented a lot of frequentist and bayesian methods for test with known sensitivity and specificity. Code is available here.

    • -
    • Gelman and Carpenter (2020) also applied Bayesian inference with hierarchical regression and post-stratification to account for test uncertainty with unknown specificity and sensitivity. Here a case-study.

    • -
    -
    -

    @@ -318,147 +136,34 @@

    Acknowledgements

    Many thanks to the Centro Nacional de Epidemiología, Prevención y Control de Enfermedades (CDC Perú) for the opportunity to work on this project.

    -
    +

    -References

    -

    Azman, Andrew S, Stephen Lauer, M. Taufiqur Rahman Bhuiyan, Francisco J Luquero, Daniel T Leung, Sonia Hegde, Jason B Harris, et al. 2020. “Vibrio Cholerae O1 Transmission in Bangladesh: Insights from a Nationally- Representative Serosurvey,” March. https://doi.org/10.1101/2020.03.13.20035352.

    -

    Diggle, Peter J. 2011. “Estimating Prevalence Using an Imperfect Test.” Epidemiology Research International 2011: 1–5. https://doi.org/10.1155/2011/608719.

    -

    Flor, Matthias, Michael Weiß, Thomas Selhorst, Christine Müller-Graf, and Matthias Greiner. 2020. “Comparison of Bayesian and Frequentist Methods for Prevalence Estimation Under Misclassification.” BMC Public Health 20 (1). https://doi.org/10.1186/s12889-020-09177-4.

    -

    Gelman, Andrew, and Bob Carpenter. 2020. “Bayesian Analysis of Tests with Unknown Specificity and Sensitivity.” Journal of the Royal Statistical Society: Series C (Applied Statistics), August. https://doi.org/10.1111/rssc.12435.

    -

    Hallal, Pedro C, Fernando P Hartwig, Bernardo L Horta, Mariângela F Silveira, Claudio J Struchiner, Luı́s P Vidaletti, Nelson A Neumann, et al. 2020. “SARS-CoV-2 Antibody Prevalence in Brazil: Results from Two Successive Nationwide Serological Household Surveys.” The Lancet Global Health, September. https://doi.org/10.1016/s2214-109x(20)30387-9.

    -

    Kritsotakis, Evangelos I. 2020. “On the Importance of Population-Based Serological Surveys of SARS-CoV-2 Without Overlooking Their Inherent Uncertainties.” Public Health in Practice 1 (November): 100013. https://doi.org/10.1016/j.puhip.2020.100013.

    -

    Larremore, Daniel B., Bailey K Fosdick, Kate M Bubar, Sam Zhang, Stephen M Kissler, C. Jessica E. Metcalf, Caroline Buckee, and Yonatan Grad.2020.“Estimating SARS-CoV-2 Seroprevalence and Epidemiological Parameters with Uncertainty from Serological Surveys.” medRxiv, April. https://doi.org/10.1101/2020.04.15.20067066.

    -

    Larremore, Daniel B., Bailey K. Fosdick, Sam Zhang, and Yonatan Grad.2020.“Jointly Modeling Prevalence, Sensitivity and Specificity for Optimal Sample Allocation.” bioRxiv, May. https://doi.org/10.1101/2020.05.23.112649.

    -

    Lewis, Fraser I, and Paul R Torgerson. 2012. “A Tutorial in Estimating the Prevalence of Disease in Humans and Animals in the Absence of a Gold Standard Diagnostic.” Emerging Themes in Epidemiology 9 (1). https://doi.org/10.1186/1742-7622-9-9.

    -

    Rogan, Walter J., and Beth Gladen. 1978. “Estimating Prevalence from the Results of A Screening Test.” American Journal of Epidemiology 107 (1): 71–76. https://doi.org/10.1093/oxfordjournals.aje.a112510.

    -

    Silveira, Mariângela F., Aluı́sio J. D. Barros, Bernardo L. Horta, Lúcia C. Pellanda, Gabriel D. Victora, Odir A. Dellagostin, Claudio J. Struchiner, et al. 2020. “Population-Based Surveys of Antibodies Against SARS-CoV-2 in Southern Brazil.” Nature Medicine 26 (8): 1196–9. https://doi.org/10.1038/s41591-020-0992-3.

    -

    Takahashi, Saki, Bryan Greenhouse, and Isabel Rodríguez-Barraquer. 2020. “Are SARS-CoV-2 seroprevalence estimates biased?” The Journal of Infectious Diseases, August. https://doi.org/10.1093/infdis/jiaa523.

    -
    - -
    - -Azman, Andrew S, Stephen Lauer, M. Taufiqur Rahman Bhuiyan, Francisco J -Luquero, Daniel T Leung, Sonia Hegde, Jason B Harris, et al. 2020. -“Vibrio Cholerae O1 Transmission in Bangladesh: Insights from a -Nationally- Representative Serosurvey,” March. -. - - -
    - -
    - -Diggle, Peter J. 2011. “Estimating Prevalence Using an Imperfect Test.” -*Epidemiology Research International* 2011: 1–5. -. - - -
    - -
    - -Flor, Matthias, Michael Weiß, Thomas Selhorst, Christine Müller-Graf, -and Matthias Greiner. 2020. “Comparison of Bayesian and Frequentist -Methods for Prevalence Estimation Under Misclassification.” *BMC Public -Health* 20 (1). . - - -
    - -
    - -Gelman, Andrew, and Bob Carpenter. 2020. “Bayesian Analysis of Tests -with Unknown Specificity and Sensitivity.” *Journal of the Royal -Statistical Society: Series C (Applied Statistics)*, August. -. - - -
    - -
    - -Hallal, Pedro C, Fernando P Hartwig, Bernardo L Horta, Mariângela F -Silveira, Claudio J Struchiner, Luı́s P Vidaletti, Nelson A Neumann, et -al. 2020. “SARS-CoV-2 Antibody Prevalence in Brazil: Results from Two -Successive Nationwide Serological Household Surveys.” *The Lancet Global -Health*, September. . - - -
    - -
    - -Kritsotakis, Evangelos I. 2020. “On the Importance of Population-Based -Serological Surveys of SARS-CoV-2 Without Overlooking Their Inherent -Uncertainties.” *Public Health in Practice* 1 (November): 100013. -. - - -
    - -
    - -Larremore, Daniel B, Bailey K Fosdick, Kate M Bubar, Sam Zhang, Stephen -M Kissler, C. Jessica E. Metcalf, Caroline Buckee, and Yonatan Grad. -2020. “Estimating SARS-CoV-2 Seroprevalence and Epidemiological -Parameters with Uncertainty from Serological Surveys.” *medRxiv*, April. -. - - -
    - -
    - -Larremore, Daniel B., Bailey K. Fosdick, Sam Zhang, and Yonatan H. Grad. -2020. “Jointly Modeling Prevalence, Sensitivity and Specificity for -Optimal Sample Allocation.” *bioRxiv*, May. -. - - -
    - -
    - -Lewis, Fraser I, and Paul R Torgerson. 2012. “A Tutorial in Estimating -the Prevalence of Disease in Humans and Animals in the Absence of a Gold -Standard Diagnostic.” *Emerging Themes in Epidemiology* 9 (1). -. - - -
    - -
    - -Rogan, Walter J., and Beth Gladen. 1978. “Estimating Prevalence from the -Results of A Screening Test.” *American Journal of Epidemiology* 107 -(1): 71–76. . - - -
    - - - -
    - -Takahashi, Saki, Bryan Greenhouse, and Isabel Rodríguez-Barraquer. 2020. -“Are SARS-CoV-2 seroprevalence estimates biased?” *The Journal of -Infectious Diseases*, August. . - -
    -
    -
    -
    -
    ggplot_prevalence(data, category, outcome, proportion, proportion_upp,
    -  proportion_low, breaks_n = 5)
    -
    -ggplot_prevalence_ii(data, denominator_level, numerator, proportion,
    -  proportion_upp, proportion_low, breaks_n = 5)
    +
    ggplot_prevalence(data, denominator_level, numerator, proportion,
    +  proportion_upp, proportion_low)

    Arguments

    @@ -140,12 +140,16 @@

    Arg

    - - + + - - + + @@ -157,23 +161,8 @@

    Arg

    - - - - - - - - - - - - - +

    input tibble

    category

    denominator level

    denominator_level
      +
    • denominator values column

    • +
    outcome

    numerator variable

    numerator
      +
    • numerator variable name column

    • +
    proportion
    proportion_low

    lower interval

    breaks_n

    number of breaks in axis

    denominator_level
      -
    • denominator values column

    • -
    numerator
      -
    • numerator variable name column

    • -

    lower interval +#param breaks_n number of breaks in axis

    @@ -182,7 +171,6 @@

    Fun
    • ggplot_prevalence: ggplot2 visualization of proportions

    • -
    • ggplot_prevalence_ii: ggplot_prevalence with new arguments

    diff --git a/docs/reference/index.html b/docs/reference/index.html index a8f4f01..8453798 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -88,6 +88,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • @@ -139,7 +142,7 @@

    ggplot_prevalence() ggplot_prevalence_ii()

    +

    ggplot_prevalence()

    Visualization of proportions

    diff --git a/docs/reference/rogan_gladen_stderr_unk.html b/docs/reference/rogan_gladen_stderr_unk.html index 372364c..fbc602b 100644 --- a/docs/reference/rogan_gladen_stderr_unk.html +++ b/docs/reference/rogan_gladen_stderr_unk.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/sample_posterior_r_mcmc_hyperR.html b/docs/reference/sample_posterior_r_mcmc_hyperR.html index 449b760..f022e15 100644 --- a/docs/reference/sample_posterior_r_mcmc_hyperR.html +++ b/docs/reference/sample_posterior_r_mcmc_hyperR.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/sample_posterior_r_mcmc_testun.html b/docs/reference/sample_posterior_r_mcmc_testun.html index a3a4f5e..d9da228 100644 --- a/docs/reference/sample_posterior_r_mcmc_testun.html +++ b/docs/reference/sample_posterior_r_mcmc_testun.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/serosvy_known_sample_posterior.html b/docs/reference/serosvy_known_sample_posterior.html index e194ce0..675cbea 100644 --- a/docs/reference/serosvy_known_sample_posterior.html +++ b/docs/reference/serosvy_known_sample_posterior.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/serosvy_unknown_sample_posterior.html b/docs/reference/serosvy_unknown_sample_posterior.html index 62316cf..221e643 100644 --- a/docs/reference/serosvy_unknown_sample_posterior.html +++ b/docs/reference/serosvy_unknown_sample_posterior.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/srvyr_prop_step_01.html b/docs/reference/srvyr_prop_step_01.html index c527187..1ac491e 100644 --- a/docs/reference/srvyr_prop_step_01.html +++ b/docs/reference/srvyr_prop_step_01.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +
  • diff --git a/docs/reference/unite_dotwhiskers.html b/docs/reference/unite_dotwhiskers.html index 1412cd1..7acf19d 100644 --- a/docs/reference/unite_dotwhiskers.html +++ b/docs/reference/unite_dotwhiskers.html @@ -91,6 +91,9 @@
  • Workflow: How to use the serosurvey R package?
  • +
  • + Introduction: serosurvey R package +