forked from prj-/aldaas2021robust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparse_ls.c
151 lines (143 loc) · 6.23 KB
/
sparse_ls.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
Author(s): Pierre Jolivet <[email protected]>
Date: 2021-07-11
Copyright (C) 2021- Centre National de la Recherche Scientifique
This script is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
If you use this script, you are kindly asked to cite the following article:
"A Robust Algebraic Domain Decomposition Preconditioner for Sparse Normal Equations",
H. Al Daas, P. Jolivet, and J. A. Scott (2022).
*/
#include <petsc.h>
static char help[] = "Solves a linear least squares problem system using PCHPDDM.\n\n";
int main(int argc,char **args)
{
Vec x,b,c;
Mat A,B,*Neumann,aux,C = NULL;
KSP ksp;
PC pc;
IS is,rows,cols;
PetscMPIInt rank;
PetscReal norm[2];
PetscInt m,n;
PetscBool normal = PETSC_FALSE,flg,qr = PETSC_FALSE;
PetscViewer viewer;
char name[PETSC_MAX_PATH_LEN];
PetscFunctionBeginUser;
PetscCall(PetscInitialize(&argc,&args,NULL,help));
PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD,&rank));
// begin loading phase (section 4.1.1)
PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
PetscCall(PetscOptionsGetString(NULL,NULL,"-mat_name",name,sizeof(name),&flg));
PetscCheck(flg,PETSC_COMM_WORLD,PETSC_ERR_USER,"Must specify matrix name with -mat_name");
PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD,name,FILE_MODE_READ,&viewer));
PetscCall(MatLoad(A,viewer));
PetscCall(PetscViewerDestroy(&viewer));
// end loading phase
PetscCall(KSPCreate(PETSC_COMM_WORLD,&ksp));
PetscCall(KSPSetFromOptions(ksp));
PetscCall(KSPGetPC(ksp,&pc));
PetscCall(PetscObjectTypeCompare((PetscObject)pc,PCQR,&flg));
if (flg) {
PetscCall(KSPSetOperators(ksp,A,A));
PetscCall(KSPSetType(ksp,KSPPREONLY));
} else {
MatPartitioning mpart;
Mat perm;
// begin partitioning phase (section 4.1.1)
PetscCall(MatProductCreate(A,A,NULL,&B));
PetscCall(MatProductSetType(B,MATPRODUCT_AtB));
PetscCall(MatProductSetFromOptions(B));
PetscCall(MatProductSymbolic(B));
PetscCall(MatPartitioningCreate(PETSC_COMM_WORLD,&mpart));
PetscCall(MatPartitioningSetAdjacency(mpart,B));
PetscCall(MatPartitioningSetFromOptions(mpart));
PetscCall(MatPartitioningApply(mpart,&is));
PetscCall(MatPartitioningDestroy(&mpart));
PetscCall(ISBuildTwoSided(is,NULL,&rows));
PetscCall(ISDestroy(&is));
PetscCall(PetscOptionsGetBool(NULL,NULL,"-pc_use_qr",&qr,NULL));
if (!qr) PetscCall(MatProductNumeric(B));
PetscCall(MatCreateSubMatrix(B,rows,rows,MAT_INITIAL_MATRIX,&perm));
PetscCall(MatHeaderReplace(B,&perm));
if (!qr) {
PetscCall(MatNorm(B,NORM_FROBENIUS,norm));
PetscCall(MatSetOption(B,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE));
PetscCall(MatSetOption(B,MAT_SYMMETRIC,PETSC_TRUE));
PetscCall(MatShift(B,*norm * 1.0e-10));
}
PetscCall(MatGetOwnershipRange(A,&m,&n));
PetscCall(ISCreateStride(PETSC_COMM_WORLD,n-m,m,1,&is));
PetscCall(MatCreateSubMatrix(A,is,rows,MAT_INITIAL_MATRIX,&perm));
PetscCall(MatHeaderReplace(A,&perm));
PetscCall(ISDestroy(&is));
PetscCall(ISDestroy(&rows));
// end partitioning phase
// begin setup phase (section 4.1.2)
PetscCall(PetscObjectTypeCompare((PetscObject)ksp,KSPLSQR,&normal));
normal = (PetscBool)!normal;
if (normal || qr) PetscCall(MatCreateNormal(A,&C));
PetscCall(KSPSetOperators(ksp,normal?C:A,qr?C:B));
PetscCall(PetscObjectTypeCompare((PetscObject)pc,PCHPDDM,&flg));
if (flg) {
flg = PETSC_FALSE;
PetscCall(PetscOptionsGetBool(NULL,NULL,"-pc_hidden_setup",&flg,NULL));
if (!flg) {
PetscCall(MatGetOwnershipRangeColumn(A,&m,&n));
PetscCall(ISCreateStride(PETSC_COMM_SELF,n-m,m,1,&cols));
PetscCall(MatGetSize(A,&m,NULL));
PetscCall(ISCreateStride(PETSC_COMM_SELF,m,0,1,&rows));
PetscCall(MatSetOption(A,MAT_SUBMAT_SINGLEIS,PETSC_TRUE));
PetscCall(MatCreateSubMatrices(A,1,&rows,&cols,MAT_INITIAL_MATRIX,&Neumann));
PetscCall(MatFindZeroRows(*Neumann,&is));
PetscCall(MatDestroySubMatrices(1,&Neumann));
PetscCall(MatIncreaseOverlap(B,1,&cols,1));
PetscCall(MatCreateSubMatrices(A,1,&rows,&cols,MAT_INITIAL_MATRIX,&Neumann));
PetscCall(ISDestroy(&rows));
PetscCall(MatSetOption(*Neumann,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE));
PetscCall(MatZeroRowsIS(*Neumann,is,0.0,NULL,NULL));
PetscCall(ISDestroy(&is));
if (!qr) {
PetscCall(MatTransposeMatMult(*Neumann,*Neumann,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&aux));
PetscCall(MatNorm(aux,NORM_FROBENIUS,norm));
PetscCall(MatSetOption(aux,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE));
PetscCall(MatShift(aux,*norm * 1.0e-8));
} else PetscCall(MatCreateNormal(Neumann[0],&aux));
PetscCall(MatDestroySubMatrices(1,&Neumann));
PetscCall(PCHPDDMSetAuxiliaryMat(pc,cols,aux,NULL,NULL));
PetscCall(PCHPDDMHasNeumannMat(pc,PETSC_TRUE));
if (!normal) {
PCHPDDMCoarseCorrectionType type;
PetscCall(PCHPDDMGetCoarseCorrectionType(pc,&type));
if (type == PC_HPDDM_COARSE_CORRECTION_DEFLATED) PetscCall(PCHPDDMSetCoarseCorrectionType(pc,PC_HPDDM_COARSE_CORRECTION_BALANCED));
}
PetscCall(ISDestroy(&cols));
PetscCall(MatDestroy(&aux));
}
}
// end setup phase
PetscCall(MatDestroy(&B));
PetscCall(MatDestroy(&C));
}
// begin solution phase (section 4.1.3)
PetscCall(MatCreateVecs(A,&x,&b));
PetscCall(VecSetRandom(b,NULL));
PetscCall(VecDuplicate(x,&c));
PetscCall(MatMultTranspose(A,b,c));
PetscCall(KSPSolve(ksp,normal?c:b,x));
// end solution phase
PetscCall(VecScale(b,-1.0));
PetscCall(MatMultAdd(A,x,b,b));
PetscCall(VecNorm(b,NORM_2,norm));
PetscCall(MatMultTranspose(A,b,c));
PetscCall(VecNorm(c,NORM_2,norm+1));
if (!rank) PetscCall(PetscPrintf(PETSC_COMM_SELF,"||A^T(Ax-b)|| / ||Ax-b|| = %f / %f = %f\n",(double)norm[1],(double)norm[0],(double)(norm[1]/norm[0])));
PetscCall(KSPDestroy(&ksp));
PetscCall(VecDestroy(&c));
PetscCall(VecDestroy(&x));
PetscCall(VecDestroy(&b));
PetscCall(MatDestroy(&A));
PetscCall(PetscFinalize());
return 0;
}