-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_large_graphs_multiclass.py
453 lines (409 loc) · 13.6 KB
/
train_large_graphs_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from __future__ import division
from __future__ import print_function
import os
import time
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import *
import model as models
import uuid
from torch.utils.tensorboard import SummaryWriter
import shutil
import torch.utils.data as Data
import torch.nn as nn
from torch_geometric.utils import to_scipy_sparse_matrix
import torch_geometric.datasets as pygeo_datasets
from torch_geometric.loader import GraphSAINTRandomWalkSampler
from torch_geometric.nn import GraphConv
from torch_geometric.utils import degree
from sklearn.metrics import f1_score
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument(
"--root",
type=str,
default="/home/as03347/sceneEvolution/models/gcnii",
help="root directory",
)
parser.add_argument(
"--expname", type=str, default="220726_yelp_gcn_noise0", help="experiment name"
)
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument(
"--epochs", type=int, default=5000, help="Number of epochs to train."
)
parser.add_argument("--lr", type=float, default=0.01, help="learning rate.")
parser.add_argument(
"--wd1", type=float, default=0.01, help="weight decay (L2 loss on parameters)."
)
parser.add_argument(
"--wd2", type=float, default=5e-4, help="weight decay (L2 loss on parameters)."
)
parser.add_argument("--layer", type=int, default=64, help="Number of layers.")
parser.add_argument("--hidden", type=int, default=64, help="hidden dimensions.")
parser.add_argument(
"--dropout", type=float, default=0.6, help="Dropout rate (1 - keep probability)."
)
parser.add_argument("--patience", type=int, default=2000, help="Patience")
parser.add_argument("--data", default="Yelp", help="dateset")
parser.add_argument("--dev", type=int, default=0, help="device id")
parser.add_argument("--alpha", type=float, default=0.1, help="alpha_l")
parser.add_argument("--lamda", type=float, default=0.5, help="lamda.")
parser.add_argument("--variant", type=str2bool, default=False, help="GCN* model.")
parser.add_argument(
"--test", type=str2bool, default=True, help="evaluation on test set."
)
parser.add_argument(
"--use_normalization",
type=str2bool,
default=False,
help="use normalization constants from graphsaint",
)
parser.add_argument("--model", type=str, default="GCN_MultiClass", help="model name")
parser.add_argument(
"--edge_noise_level",
type=float,
default=0.000,
help="percentage of noisy edges to add",
)
# Differentiable graph generator specific
parser.add_argument(
"--dgm_dim",
type=int,
default=128,
help="Dimensions of the linear projection layer in the DGM",
)
parser.add_argument(
"--extra_edge_dim",
type=int,
default=2,
help="extra edge dimension (for degree etc)",
)
parser.add_argument(
"--extra_k_dim",
type=int,
default=1,
help="extra k dimension (for degree etc)",
)
parser.add_argument(
"--dgg_hard",
type=str2bool,
default=False,
help="Whether to do straight through gumbel softmax"
"(argmax in forward, softmax in backward) or just softmax top k in both",
)
parser.add_argument(
"--dgm_temp",
type=float,
default=10,
help="Gumvel softmax temperature",
)
parser.add_argument(
"--test_noise",
type=str2bool,
default=False,
help="Whether to add noise to when sampling at test time",
)
parser.add_argument(
"--deg_mean",
type=float,
default=3.899,
help="adjacecny matrix degree mean",
)
parser.add_argument(
"--deg_std",
type=float,
default=5.288,
help="adjacecny matrix degree std",
)
parser.add_argument(
"--node_sampling_ratio",
type=float,
default=0.05,
help="Sampling ratio for nodes",
)
parser.add_argument(
"--grad_clip",
type=float,
default=5,
help="gradient clipping",
)
parser.add_argument(
"--n_dgg_layers",
type=int,
default=1,
help="number of dgg layers",
)
parser.add_argument(
"--pre_normalize_adj",
type=str2bool,
default=False,
help="pre normalize adjacency matrix outside network",
)
parser.add_argument(
"--dgg_adj_input",
type=str,
default="input_adj",
help="type of adjacency matrix to use for DGG, input_adj refers to the "
"original input adjacency matrix, anything else refers to using the "
"learned adjancency matrix",
)
parser.add_argument(
"--dgg_mode_edge_net",
type=str,
default="u-v-dist",
choices=["u-v-dist", "u-v-A_uv", "u-v-deg", "edge_conv", "A_uv"],
help="mode for the edge_prob_net in DGG, determines which features are used"
"in the forward pass",
)
parser.add_argument(
"--dgg_mode_k_net",
type=str,
default="pass",
choices=["pass", "input_deg", "gcn-x-deg", "x"],
help="mode for the k_estimate_net in DGG, determines which features are used"
"in the forward pass",
)
parser.add_argument(
"--dgg_mode_k_select",
type=str,
default="edge_p-cdf",
choices=["edge_p-cdf", "k_only", "k_times_edge_prob"],
help="mode for the k_selector in DGG, determines which features are used"
"in the forward pass",
)
parser.add_argument(
"--graphsaint_bs",
type=int,
default=2000,
help="batch size of sampled subgraph using graphsaint",
)
parser.add_argument(
"--graphsaint_wl",
type=int,
default=2,
help="walk length of sampled subgraph using graphsaint",
)
def save_checkpoint(fn, args, epoch, model, optimizer, lr_scheduler):
torch.save(
{
"args": args.__dict__,
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
# "lr_scheduler_state_dict": lr_scheduler.state_dict() if lr_scheduler is not None else 'null',
},
fn,
)
def train(args, model, optimizer, loader, device, epoch, writer):
model.train()
total_loss = total_examples = total_acc = 0
for data in loader:
# parse data
data = data.to(device)
batch_adj = to_scipy_sparse_matrix(
edge_index=data.edge_index, num_nodes=data.num_nodes
)
if args.edge_noise_level > 0.0:
batch_adj = add_noisy_edges(batch_adj, noise_level=args.edge_noise_level)
batch_adj = sparse_mx_to_torch_sparse_tensor(batch_adj).to(device)
batch_feature = data.x.to(device)
batch_label = data.y.to(device)
# zero grads
optimizer.zero_grad()
# forward pass
output = model(batch_feature, batch_adj, epoch, writer)
loss = F.binary_cross_entropy(
output[data.train_mask], batch_label[data.train_mask].float()
)
acc_train = evaluate(output[data.train_mask], batch_label[data.train_mask])
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_nodes
total_acc += acc_train.item() * data.num_nodes
total_examples += data.num_nodes
loss_train = total_loss / total_examples
acc_train = total_acc / total_examples
return loss_train, acc_train
@torch.no_grad()
def validate(args, model, loader, device, epoch, writer):
model.eval()
total_test_acc = total_examples = 0
for data in loader:
data = data.to(device)
batch_adj = to_scipy_sparse_matrix(
edge_index=data.edge_index, num_nodes=data.num_nodes
)
if args.edge_noise_level > 0.0:
batch_adj = add_noisy_edges(batch_adj, noise_level=args.edge_noise_level)
batch_adj = sparse_mx_to_torch_sparse_tensor(batch_adj).to(device)
batch_feature = data.x.to(device)
batch_label = data.y.to(device)
out = model(batch_feature, batch_adj, epoch, writer)
acc_test = evaluate(out[data.val_mask], batch_label[data.val_mask])
total_test_acc += acc_test * data.num_nodes
total_examples += data.num_nodes
test_acc = total_test_acc / total_examples
return None, test_acc
@torch.no_grad()
def test(args, model, loader, device, epoch, writer):
model.eval()
total_test_acc = total_examples = 0
for data in loader:
data = data.to(device)
batch_adj = to_scipy_sparse_matrix(
edge_index=data.edge_index, num_nodes=data.num_nodes
)
batch_adj = sparse_mx_to_torch_sparse_tensor(batch_adj).to(device)
batch_feature = data.x.to(device)
batch_label = data.y.to(device)
out = model(batch_feature, batch_adj, epoch, writer)
acc_test = evaluate(out[data.test_mask], batch_label[data.test_mask])
total_test_acc += acc_test * data.num_nodes
total_examples += data.num_nodes
test_acc = total_test_acc / total_examples
return None, test_acc
def test_best(
args, model, test_feat, test_adj, test_labels, test_nodes, loss_fcn, device
):
model.load_state_dict(torch.load(checkpt_file)["model_state_dict"])
loss_test = 0
acc_test = 0
for batch in range(2):
batch_adj = test_adj[batch].to(device)
batch_feature = test_feat[batch].to(device)
batch_label = test_labels[batch].to(device)
score, loss = evaluate(
batch_feature, model, test_nodes[batch], batch_adj, batch_label, loss_fcn
)
loss_test += loss
acc_test += score
acc_test /= 2
loss_test /= 2
return loss_test, acc_test
# adapted from DGL
def evaluate(output, labels):
with torch.no_grad():
predict = (output > 0.5).float()
score = f1_score(labels.cpu().numpy(), predict.cpu().numpy(), average="micro")
return score
if __name__ == "__main__":
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Initialise directories
outdir = os.path.join(args.root, "outputs")
expdir = os.path.join(outdir, args.expname)
tbdir = os.path.join(expdir, "tb")
codedir = os.path.join(expdir, "code")
os.makedirs(outdir, exist_ok=True)
os.makedirs(expdir, exist_ok=True)
os.makedirs(tbdir, exist_ok=True)
os.makedirs(codedir, exist_ok=True)
checkpt_file = os.path.join(expdir, uuid.uuid4().hex + ".pt")
print(checkpt_file)
# Make copy of code
python_files = [f for f in os.listdir(args.root) if ".py" in f]
for f in python_files:
shutil.copyfile(src=os.path.join(args.root, f), dst=os.path.join(codedir, f))
# Tensorboard writer
writer = SummaryWriter(tbdir)
# Load data
if "DGG" not in args.model:
args.pre_normalize_adj = False
root = "/home/as03347/sceneEvolution/data/graph_data/{}".format(args.data)
dataset = pygeo_datasets.__dict__[args.data](root)
data = dataset[0]
row, col = data.edge_index
data.edge_weight = 1.0 / degree(col, data.num_nodes)[col] # Norm by in-degree.
loader = GraphSAINTRandomWalkSampler(
data,
batch_size=args.graphsaint_bs,
walk_length=args.graphsaint_wl,
num_steps=5,
sample_coverage=100,
save_dir=dataset.processed_dir,
num_workers=0,
)
cudaid = "cuda"
device = torch.device(cudaid)
# Load model
model = models.__dict__[args.model](
nfeat=dataset.num_features,
nlayers=args.layer,
nhidden=args.hidden,
nclass=dataset.num_classes,
dropout=args.dropout,
lamda=args.lamda,
alpha=args.alpha,
variant=args.variant,
args=args,
).to(device)
if "GCNII" in args.model:
optimizer = optim.Adam(
[
{"params": model.params1, "weight_decay": args.wd1},
{"params": model.params2, "weight_decay": args.wd2},
],
lr=args.lr,
)
else:
optimizer = optim.Adam(
[
dict(params=model.params1, weight_decay=5e-4),
dict(params=model.params2, weight_decay=0),
],
lr=args.lr,
) # Only perform weight-decay on first convolution.
# Run
t_total = time.time()
bad_counter = 0
best_epoch = 0
acc = 0
for epoch in range(args.epochs):
loss_train, acc_train = train(
args, model, optimizer, loader, device, epoch, writer
)
acc_val = validate(args, model, loader, device, epoch, writer)[1]
acc_test = test(args, model, loader, device, epoch, writer)[1]
if (epoch + 1) % 1 == 0:
print(
"Epoch:{:04d}".format(epoch + 1),
"train",
"loss:{:.3f}".format(loss_train),
"acc:{:.3f}".format(acc_train),
"| test",
"f1:{:.3f}".format(acc_test * 100),
)
writer.add_scalar("train/loss", loss_train, epoch)
writer.add_scalar("train/acc", acc_train, epoch)
writer.add_scalar("val/acc", acc_val, epoch)
writer.add_scalar("test/acc", acc_test, epoch)
if acc_val > acc:
acc = acc_val
best_epoch = epoch
acc = acc_val
# save_checkpoint(
# checkpt_file, args, epoch, model, optimizer,
# lr_scheduler="None"
# )
bad_counter = 0
else:
bad_counter += 1
if bad_counter == args.patience:
break
if args.test:
# acc = test_best(
# args, model, test_feat, test_adj, test_labels,
# test_nodes, loss_fcn, device
# )[1]
acc = acc_test
print("Train cost: {:.4f}s".format(time.time() - t_total))
print("Load {}th epoch".format(best_epoch))
print("Test" if args.test else "Val", "f1.:{:.2f}".format(acc * 100))