comments | difficulty | edit_url |
---|---|---|
true |
Easy |
Given a sorted (increasing order) array with unique integer elements, write an algorithm to create a binary search tree with minimal height.
Example:
Given sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5],which represents the following tree: 0 / \ -3 9 / / -10 5
We design a function dfs(l, r)
, which constructs a subtree from l
to r
. Therefore, the answer is dfs(0, len(nums) - 1)
.
The execution process of the function dfs(l, r)
is as follows:
- If
l > r
, returnNone
. - Otherwise, we calculate the middle position
mid = (l + r) / 2
, then construct the root node, the left subtree isdfs(l, mid - 1)
, and the right subtree isdfs(mid + 1, r)
. - Finally, return the root node.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
def dfs(l: int, r: int) -> TreeNode:
if l > r:
return None
mid = (l + r) >> 1
return TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r))
return dfs(0, len(nums) - 1)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int[] nums;
public TreeNode sortedArrayToBST(int[] nums) {
this.nums = nums;
return dfs(0, nums.length - 1);
}
private TreeNode dfs(int l, int r) {
if (l > r) {
return null;
}
int mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
function<TreeNode*(int, int)> dfs = [&](int l, int r) -> TreeNode* {
if (l > r) {
return nullptr;
}
int mid = l + r >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.size() - 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedArrayToBST(nums []int) *TreeNode {
var dfs func(int, int) *TreeNode
dfs = func(l, r int) *TreeNode {
if l > r {
return nil
}
mid := (l + r) >> 1
return &TreeNode{nums[mid], dfs(l, mid-1), dfs(mid+1, r)}
}
return dfs(0, len(nums)-1)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sortedArrayToBST(nums: number[]): TreeNode | null {
const dfs = (l: number, r: number): TreeNode | null => {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
};
return dfs(0, nums.length - 1);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(nums: &Vec<i32>, l: usize, r: usize) -> Option<Rc<RefCell<TreeNode>>> {
if l >= r {
return None;
}
let mid = (l + r) >> 1;
Some(Rc::new(RefCell::new(TreeNode {
val: nums[mid],
left: Self::dfs(nums, l, mid),
right: Self::dfs(nums, mid + 1, r),
})))
}
pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
Self::dfs(&nums, 0, nums.len())
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
var sortedArrayToBST = function (nums) {
function dfs(l, r) {
if (l > r) {
return null;
}
const mid = (l + r) >> 1;
return new TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r));
}
return dfs(0, nums.length - 1);
};
/**
* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
*
* init(_ val: Int, _ left: TreeNode? = nil, _ right: TreeNode? = nil) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
private var nums: [Int]!
func sortedArrayToBST(_ nums: [Int]) -> TreeNode? {
self.nums = nums
return dfs(0, nums.count - 1)
}
private func dfs(_ l: Int, _ r: Int) -> TreeNode? {
if l > r {
return nil
}
let mid = (l + r) / 2
return TreeNode(nums[mid], dfs(l, mid - 1), dfs(mid + 1, r))
}
}