Skip to content

Latest commit

 

History

History
283 lines (244 loc) · 8.62 KB

README.md

File metadata and controls

283 lines (244 loc) · 8.62 KB
comments difficulty edit_url
true
中等

English Version

题目描述

给定一个方阵,其中每个单元(像素)非黑即白。设计一个算法,找出 4 条边皆为黑色像素的最大子方阵。

返回一个数组 [r, c, size] ,其中 rc 分别代表子方阵左上角的行号和列号,size 是子方阵的边长。若有多个满足条件的子方阵,返回 r 最小的,若 r 相同,返回 c 最小的子方阵。若无满足条件的子方阵,返回空数组。

示例 1:

输入:
[
   [1,0,1],
   [0,0,1],
   [0,0,1]
]
输出: [1,0,2]
解释: 输入中 0 代表黑色,1 代表白色,标粗的元素即为满足条件的最大子方阵

示例 2:

输入:
[
   [0,1,1],
   [1,0,1],
   [1,1,0]
]
输出: [0,0,1]

提示:

  • matrix.length == matrix[0].length <= 200

解法

方法一:预处理 + 枚举

我们可以预处理出每个位置 $(i, j)$ 向下和向右的连续 $0$ (黑色像素)的个数,记为 $down[i][j]$$right[i][j]$。递推公式如下:

$$ down[i][j] = \begin{cases} down[i + 1][j] + 1, & matrix[i][j] = 0 \textit{ 且 } i + 1 < n \\ 1, & matrix[i][j] = 0 \textit{ 且 } i + 1 = n \\ 0, & matrix[i][j] = 1 \end{cases} $$

$$ right[i][j] = \begin{cases} right[i][j + 1] + 1, & matrix[i][j] = 0 \textit{ 且 } j + 1 < n \\ 1, & matrix[i][j] = 0 \textit{ 且 } j + 1 = n \\ 0, & matrix[i][j] = 1 \end{cases} $$

需要注意的是,由于 $down[i][j]$ 依赖于 $down[i + 1][j]$,而 $right[i][j]$ 依赖于 $right[i][j + 1]$,所以,我们在预处理 $down[i][j]$$right[i][j]$ 时,是从大到小枚举 $i$$j$ 的。

接下来,我们从大到小枚举正方形的边长 $k$,从小到大枚举正方形的左上角位置 $(i, j)$,如果满足 $down[i][j] \ge k$$right[i][j] \ge k$$right[i + k - 1][j] \ge k$$down[i][j + k - 1] \ge k$,说明我们找到了一个边长最大为 $k$ 且左上角位置为 $(i, j)$ 的黑方阵,直接返回 $[i, j, k]$ 即可。

如果枚举完所有的正方形都没有满足条件的,那么返回空数组。

时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 是方阵的边长。

相似题目:

Python3

class Solution:
    def findSquare(self, matrix: List[List[int]]) -> List[int]:
        n = len(matrix)
        down = [[0] * n for _ in range(n)]
        right = [[0] * n for _ in range(n)]
        for i in range(n - 1, -1, -1):
            for j in range(n - 1, -1, -1):
                if matrix[i][j] == 0:
                    down[i][j] = down[i + 1][j] + 1 if i + 1 < n else 1
                    right[i][j] = right[i][j + 1] + 1 if j + 1 < n else 1
        for k in range(n, 0, -1):
            for i in range(n - k + 1):
                for j in range(n - k + 1):
                    if (
                        down[i][j] >= k
                        and right[i][j] >= k
                        and right[i + k - 1][j] >= k
                        and down[i][j + k - 1] >= k
                    ):
                        return [i, j, k]
        return []

Java

class Solution {
    public int[] findSquare(int[][] matrix) {
        int n = matrix.length;
        int[][] down = new int[n][n];
        int[][] right = new int[n][n];
        for (int i = n - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                if (matrix[i][j] == 0) {
                    down[i][j] = i + 1 < n ? down[i + 1][j] + 1 : 1;
                    right[i][j] = j + 1 < n ? right[i][j + 1] + 1 : 1;
                }
            }
        }
        for (int k = n; k > 0; --k) {
            for (int i = 0; i <= n - k; ++i) {
                for (int j = 0; j <= n - k; ++j) {
                    if (down[i][j] >= k && right[i][j] >= k && right[i + k - 1][j] >= k
                        && down[i][j + k - 1] >= k) {
                        return new int[] {i, j, k};
                    }
                }
            }
        }
        return new int[0];
    }
}

C++

class Solution {
public:
    vector<int> findSquare(vector<vector<int>>& matrix) {
        int n = matrix.size();
        int down[n][n];
        int right[n][n];
        memset(down, 0, sizeof(down));
        memset(right, 0, sizeof(right));
        for (int i = n - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                if (matrix[i][j] == 0) {
                    down[i][j] = i + 1 < n ? down[i + 1][j] + 1 : 1;
                    right[i][j] = j + 1 < n ? right[i][j + 1] + 1 : 1;
                }
            }
        }
        for (int k = n; k > 0; --k) {
            for (int i = 0; i <= n - k; ++i) {
                for (int j = 0; j <= n - k; ++j) {
                    if (down[i][j] >= k && right[i][j] >= k && right[i + k - 1][j] >= k && down[i][j + k - 1] >= k) {
                        return {i, j, k};
                    }
                }
            }
        }
        return {};
    }
};

Go

func findSquare(matrix [][]int) []int {
	n := len(matrix)
	down := make([][]int, n)
	right := make([][]int, n)
	for i := range down {
		down[i] = make([]int, n)
		right[i] = make([]int, n)
	}
	for i := n - 1; i >= 0; i-- {
		for j := n - 1; j >= 0; j-- {
			if matrix[i][j] == 0 {
				down[i][j], right[i][j] = 1, 1
				if i+1 < n {
					down[i][j] += down[i+1][j]
				}
				if j+1 < n {
					right[i][j] += right[i][j+1]
				}
			}
		}
	}
	for k := n; k > 0; k-- {
		for i := 0; i <= n-k; i++ {
			for j := 0; j <= n-k; j++ {
				if down[i][j] >= k && right[i][j] >= k && right[i+k-1][j] >= k && down[i][j+k-1] >= k {
					return []int{i, j, k}
				}
			}
		}
	}
	return []int{}
}

TypeScript

function findSquare(matrix: number[][]): number[] {
    const n = matrix.length;
    const down: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
    const right: number[][] = Array.from({ length: n }, () => Array(n).fill(0));
    for (let i = n - 1; i >= 0; --i) {
        for (let j = n - 1; j >= 0; --j) {
            if (matrix[i][j] === 0) {
                down[i][j] = i + 1 < n ? down[i + 1][j] + 1 : 1;
                right[i][j] = j + 1 < n ? right[i][j + 1] + 1 : 1;
            }
        }
    }
    for (let k = n; k > 0; --k) {
        for (let i = 0; i <= n - k; ++i) {
            for (let j = 0; j <= n - k; ++j) {
                if (
                    down[i][j] >= k &&
                    right[i][j] >= k &&
                    right[i + k - 1][j] >= k &&
                    down[i][j + k - 1] >= k
                ) {
                    return [i, j, k];
                }
            }
        }
    }
    return [];
}

Swift

class Solution {
    func findSquare(_ matrix: [[Int]]) -> [Int] {
        let n = matrix.count
        var down = Array(repeating: Array(repeating: 0, count: n), count: n)
        var right = Array(repeating: Array(repeating: 0, count: n), count: n)

        for i in stride(from: n - 1, through: 0, by: -1) {
            for j in stride(from: n - 1, through: 0, by: -1) {
                if matrix[i][j] == 0 {
                    down[i][j] = (i + 1 < n) ? down[i + 1][j] + 1 : 1
                    right[i][j] = (j + 1 < n) ? right[i][j + 1] + 1 : 1
                }
            }
        }

        for k in stride(from: n, through: 1, by: -1) {
            for i in 0...(n - k) {
                for j in 0...(n - k) {
                    if down[i][j] >= k && right[i][j] >= k &&
                       right[i + k - 1][j] >= k && down[i][j + k - 1] >= k {
                        return [i, j, k]
                    }
                }
            }
        }

        return []
    }
}