Skip to content

Latest commit

 

History

History
335 lines (287 loc) · 9.12 KB

File metadata and controls

335 lines (287 loc) · 9.12 KB
comments difficulty edit_url tags
true
Hard
Depth-First Search
Breadth-First Search
Union Find
Array
Binary Search
Matrix
Heap (Priority Queue)

中文文档

Description

You are given an n x n integer matrix grid where each value grid[i][j] represents the elevation at that point (i, j).

The rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.

Return the least time until you can reach the bottom right square (n - 1, n - 1) if you start at the top left square (0, 0).

 

Example 1:

Input: grid = [[0,2],[1,3]]
Output: 3
Explanation:
At time 0, you are in grid location (0, 0).
You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
You cannot reach point (1, 1) until time 3.
When the depth of water is 3, we can swim anywhere inside the grid.

Example 2:

Input: grid = [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
Output: 16
Explanation: The final route is shown.
We need to wait until time 16 so that (0, 0) and (4, 4) are connected.

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] < n2
  • Each value grid[i][j] is unique.

Solutions

Solution 1

Python3

class Solution:
    def swimInWater(self, grid: List[List[int]]) -> int:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        n = len(grid)
        p = list(range(n * n))
        hi = [0] * (n * n)
        for i, row in enumerate(grid):
            for j, h in enumerate(row):
                hi[h] = i * n + j
        for t in range(n * n):
            i, j = hi[t] // n, hi[t] % n
            for a, b in [(0, -1), (0, 1), (1, 0), (-1, 0)]:
                x, y = i + a, j + b
                if 0 <= x < n and 0 <= y < n and grid[x][y] <= t:
                    p[find(x * n + y)] = find(hi[t])
                if find(0) == find(n * n - 1):
                    return t
        return -1

Java

class Solution {
    private int[] p;

    public int swimInWater(int[][] grid) {
        int n = grid.length;
        p = new int[n * n];
        for (int i = 0; i < p.length; ++i) {
            p[i] = i;
        }
        int[] hi = new int[n * n];
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                hi[grid[i][j]] = i * n + j;
            }
        }
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int t = 0; t < n * n; ++t) {
            int i = hi[t] / n;
            int j = hi[t] % n;
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k];
                int y = j + dirs[k + 1];
                if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t) {
                    p[find(x * n + y)] = find(i * n + j);
                }
                if (find(0) == find(n * n - 1)) {
                    return t;
                }
            }
        }
        return -1;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    vector<int> p;

    int swimInWater(vector<vector<int>>& grid) {
        int n = grid.size();
        p.resize(n * n);
        for (int i = 0; i < p.size(); ++i) p[i] = i;
        vector<int> hi(n * n);
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < n; ++j)
                hi[grid[i][j]] = i * n + j;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        for (int t = 0; t < n * n; ++t) {
            int i = hi[t] / n, j = hi[t] % n;
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t)
                    p[find(x * n + y)] = find(hi[t]);
                if (find(0) == find(n * n - 1)) return t;
            }
        }
        return -1;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

func swimInWater(grid [][]int) int {
	n := len(grid)
	p := make([]int, n*n)
	for i := range p {
		p[i] = i
	}
	hi := make([]int, n*n)
	for i, row := range grid {
		for j, h := range row {
			hi[h] = i*n + j
		}
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	dirs := []int{-1, 0, 1, 0, -1}
	for t := 0; t < n*n; t++ {
		i, j := hi[t]/n, hi[t]%n
		for k := 0; k < 4; k++ {
			x, y := i+dirs[k], j+dirs[k+1]
			if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t {
				p[find(x*n+y)] = find(hi[t])
			}
			if find(0) == find(n*n-1) {
				return t
			}
		}
	}
	return -1
}

TypeScript

function swimInWater(grid: number[][]): number {
    const m = grid.length,
        n = grid[0].length;
    let visited = Array.from({ length: m }, () => new Array(n).fill(false));
    let ans = 0;
    let stack = [[0, 0, grid[0][0]]];
    const dir = [
        [0, 1],
        [0, -1],
        [1, 0],
        [-1, 0],
    ];

    while (stack.length) {
        let [i, j] = stack.shift();
        ans = Math.max(grid[i][j], ans);
        if (i == m - 1 && j == n - 1) break;
        for (let [dx, dy] of dir) {
            let x = i + dx,
                y = j + dy;
            if (x < m && x > -1 && y < n && y > -1 && !visited[x][y]) {
                visited[x][y] = true;
                stack.push([x, y, grid[x][y]]);
            }
        }
        stack.sort((a, b) => a[2] - b[2]);
    }
    return ans;
}

Rust

const DIR: [(i32, i32); 4] = [(-1, 0), (1, 0), (0, -1), (0, 1)];

impl Solution {
    #[allow(dead_code)]
    pub fn swim_in_water(grid: Vec<Vec<i32>>) -> i32 {
        let n = grid.len();
        let m = grid[0].len();
        let mut ret_time = 0;
        let mut disjoint_set: Vec<usize> = vec![0; n * m];

        // Initialize the disjoint set
        for i in 0..n * m {
            disjoint_set[i] = i;
        }

        loop {
            if Self::check_and_union(&grid, &mut disjoint_set, ret_time) {
                break;
            }
            // Otherwise, keep checking
            ret_time += 1;
        }

        ret_time
    }

    #[allow(dead_code)]
    fn check_and_union(grid: &Vec<Vec<i32>>, d_set: &mut Vec<usize>, cur_time: i32) -> bool {
        let n = grid.len();
        let m = grid[0].len();

        for i in 0..n {
            for j in 0..m {
                if grid[i][j] != cur_time {
                    continue;
                }
                // Otherwise, let's union the square with its neighbors
                for (dx, dy) in DIR {
                    let x = dx + (i as i32);
                    let y = dy + (j as i32);
                    if Self::check_bounds(x, y, n as i32, m as i32)
                        && grid[x as usize][y as usize] <= cur_time
                    {
                        Self::union(i * m + j, (x as usize) * m + (y as usize), d_set);
                    }
                }
            }
        }

        Self::find(0, d_set) == Self::find(n * m - 1, d_set)
    }

    #[allow(dead_code)]
    fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
        if d_set[x] != x {
            d_set[x] = Self::find(d_set[x], d_set);
        }
        d_set[x]
    }

    #[allow(dead_code)]
    fn union(x: usize, y: usize, d_set: &mut Vec<usize>) {
        let p_x = Self::find(x, d_set);
        let p_y = Self::find(y, d_set);
        d_set[p_x] = p_y;
    }

    #[allow(dead_code)]
    fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
        i >= 0 && i < n && j >= 0 && j < m
    }
}