Skip to content

Latest commit

 

History

History
283 lines (236 loc) · 7.86 KB

File metadata and controls

283 lines (236 loc) · 7.86 KB
comments difficulty edit_url tags
true
Medium
String
Dynamic Programming

中文文档

Description

Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.

A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

  • For example, "ace" is a subsequence of "abcde".

A common subsequence of two strings is a subsequence that is common to both strings.

 

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

 

Constraints:

  • 1 <= text1.length, text2.length <= 1000
  • text1 and text2 consist of only lowercase English characters.

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ as the length of the longest common subsequence of the first $i$ characters of $text1$ and the first $j$ characters of $text2$. Therefore, the answer is $f[m][n]$, where $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

If the $i$th character of $text1$ and the $j$th character of $text2$ are the same, then $f[i][j] = f[i - 1][j - 1] + 1$; if the $i$th character of $text1$ and the $j$th character of $text2$ are different, then $f[i][j] = max(f[i - 1][j], f[i][j - 1])$. The state transition equation is:

$$ f[i][j] = \begin{cases} f[i - 1][j - 1] + 1, & \textit{if } text1[i - 1] = text2[j - 1] \\ \max(f[i - 1][j], f[i][j - 1]), & \textit{if } text1[i - 1] \neq text2[j - 1] \end{cases} $$

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

Python3

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    f[i][j] = f[i - 1][j - 1] + 1
                else:
                    f[i][j] = max(f[i - 1][j], f[i][j - 1])
        return f[m][n]

Java

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] f = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
}

C++

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size(), n = text2.size();
        int f[m + 1][n + 1];
        memset(f, 0, sizeof f);
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1;
                } else {
                    f[i][j] = max(f[i - 1][j], f[i][j - 1]);
                }
            }
        }
        return f[m][n];
    }
};

Go

func longestCommonSubsequence(text1 string, text2 string) int {
	m, n := len(text1), len(text2)
	f := make([][]int, m+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			if text1[i-1] == text2[j-1] {
				f[i][j] = f[i-1][j-1] + 1
			} else {
				f[i][j] = max(f[i-1][j], f[i][j-1])
			}
		}
	}
	return f[m][n]
}

TypeScript

function longestCommonSubsequence(text1: string, text2: string): number {
    const m = text1.length;
    const n = text2.length;
    const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (text1[i - 1] === text2[j - 1]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }
    return f[m][n];
}

Rust

impl Solution {
    pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
        let (m, n) = (text1.len(), text2.len());
        let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
        let mut f = vec![vec![0; n + 1]; m + 1];
        for i in 1..=m {
            for j in 1..=n {
                f[i][j] = if text1[i - 1] == text2[j - 1] {
                    f[i - 1][j - 1] + 1
                } else {
                    f[i - 1][j].max(f[i][j - 1])
                };
            }
        }
        f[m][n]
    }
}

JavaScript

/**
 * @param {string} text1
 * @param {string} text2
 * @return {number}
 */
var longestCommonSubsequence = function (text1, text2) {
    const m = text1.length;
    const n = text2.length;
    const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            if (text1[i - 1] == text2[j - 1]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }
    return f[m][n];
};

C#

public class Solution {
    public int LongestCommonSubsequence(string text1, string text2) {
        int m = text1.Length, n = text2.Length;
        int[,] f = new int[m + 1, n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i, j] = f[i - 1, j - 1] + 1;
                } else {
                    f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
                }
            }
        }
        return f[m, n];
    }
}

Kotlin

class Solution {
    fun longestCommonSubsequence(text1: String, text2: String): Int {
        val m = text1.length
        val n = text2.length
        val f = Array(m + 1) { IntArray(n + 1) }
        for (i in 1..m) {
            for (j in 1..n) {
                if (text1[i - 1] == text2[j - 1]) {
                    f[i][j] = f[i - 1][j - 1] + 1
                } else {
                    f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
                }
            }
        }
        return f[m][n]
    }
}