-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsent.q
133 lines (120 loc) · 6.61 KB
/
sent.q
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
\d .nlp
// Create regex used for tokenizing
sent.tokenPattern:{
rightFacingEmoticons:"[<>]?[:;=8][\\-o\\*\\']?[\\)\\]\\(\\[dDpP/\\:\\}\\{@\\|\\\\]"; / n.b. Left-facing rarely used
miscEmoticons:"<3|[0o][._][0o]|</3|\\\\o/|[lr]&r|j/[jkptw]|\\*\\\\0/\\*|v\\.v|o/\\\\o";
urlStart:"https?://";
// Match any words
word:"\\b(?:the shit|the bomb|bad ass|yeah right|cut the mustard|kiss of death|hand to mouth|sort of|kind of|kind-of|sort-of|cover-up|once-in-a-lifetime|self-confident|short-sighted|short-sightedness|son-of-a-bitch)\\b|[\\w]{2,}(?:'[ts])?";
regex.compile[;1b]"(?:",urlStart,"|",rightFacingEmoticons,"|",miscEmoticons,"|",word,")"
}[]
// Tokenizer specifically for sentiment analyzer (won't work for general purpose tokenizing)
sent.tokenize:{`$regex.matchAll[sent.tokenPattern;x][;0]}
// Start indices of occurences of seq in list (faster than looping over list for each element)
sent.findSequence:{[list;seq]neg[count seq]+{[list;i;x]1+i where x=list i}[list]/[til count list;seq]}
// Inc mean sentiment intensity rating from '!' (up to 4)
// Empirically derived mean sentiment intensity rating increase for exclamation points
sent.amplifyEP:{.292*4&sum"!"=x}
// Inc mean sentiment intensity rating from '?' (up to 4)
// Empirically derived mean sentiment intensity rating increases for question marks
sent.amplifyQM:{(0 0 .36 .54 .96)4&sum"?"=x}
// Increase valences (weights) for booster words e.g. "really", "very"
sent.posBoosters:`$(
"absolutely"; "amazingly"; "awfully"; "completely"; "considerably"; "decidedly"; "deeply";
"effing"; "enormously"; "entirely"; "especially"; "exceptionally"; "extremely"; "fabulously";
"flipping"; "flippin"; "fricking"; "frickin"; "frigging"; "friggin"; "fully"; "fucking";
"greatly"; "hella"; "highly"; "hugely"; "incredibly"; "intensely"; "majorly"; "more"; "most";
"particularly"; "purely"; "quite"; "really"; "remarkably"; "so"; "substantially"; "thoroughly";
"totally"; "tremendously"; "uber"; "unbelievably"; "unusually"; "utterly"; "very");
sent.negBoosters:`$(
"almost"; "barely"; "hardly"; "just enough"; "kind of"; "kinda"; "kindof"; "kind-of"; "less";
"little"; "marginally"; "occasionally"; "partly"; "scarcely"; "slightly"; "somewhat"; "sort of";
"sorta"; "sortof"; "sort-of");
sent.BOOSTER_INCR: .293
sent.ALLCAPS_INCR: .733
sent.Boosters:(!). flip(sent.posBoosters,\:sent.BOOSTER_INCR),(sent.negBoosters,\:neg sent.BOOSTER_INCR)
sent.applyBoosters:{[tokens;isUpperCase;valences]
weight:sent.Boosters tokens;
// Inc degree of capitalized boosters
weight[wup]+:sent.ALLCAPS_INCR*signum weight wup:where isUpperCase;
// Add weight to next 3 tokens (add/remove 3 dummy vals in case booster is last token)
boosts:-3_@[(3+count valences)#0f;i+/:1 2 3;+;weight[i:where not null weight]*/:1 .95 .9];
// Add extra weight
valences+boosts*signum valences}
// Decrease weight of valences before "but", and increase the weight of valences after it
sent.butCheck:{[tokens;valences]$[j:count[tokens]-i:tokens?`but;@[;til i;*;.5]@[;i+1+til j-1;*;1.5]@;]"f"$valences}
// Check for idioms with associated sentiment
sent.IDIOMS:flip(
(`the`shit; 3f);
(`the`bomb; 3f);
(`bad`ass; 1.5f);
(`yeah`right; -2f);
(`cut`the`mustard; 2f);
(`kiss`of`death; -1.5f);
(`hand`to`mouth; -2f));
sent.idiomsCheck:{[tokens;valences]
indices:raze each 0 1 2 3+/:/:sent.findSequence[lower tokens]each sent.IDIOMS 0;
-3_@[;;:;]/[valences,3#0f;indices;sent.IDIOMS 1]}
// Check if preceding words increase, decrease, or negate the valence
sent.NEGATE:`$(
"aint"; "arent"; "cannot"; "cant"; "couldnt"; "darent"; "didnt"; "doesnt";
"ain't"; "aren't"; "can't"; "couldn't"; "daren't"; "didn't"; "doesn't";
"dont"; "hadnt"; "hasnt"; "havent"; "isnt"; "mightnt"; "mustnt"; "neither";
"don't"; "hadn't"; "hasn't"; "haven't"; "isn't"; "mightn't"; "mustn't";
"neednt"; "needn't"; "never"; "none"; "nope"; "nor"; "not"; "nothing"; "nowhere";
"oughtnt"; "shant"; "shouldnt"; "uhuh"; "wasnt"; "werent";
"oughtn't"; "shan't"; "shouldn't"; "uh-uh"; "wasn't"; "weren't";
"without"; "wont"; "wouldnt"; "won't"; "wouldn't"; "rarely"; "seldom"; "despite")
sent.N_SCALAR:-0.74 / Co-efficient for sentiments following negation
sent.negationCheck:{[tokens;valences]
valences,:3#0f;
// "never so/as/this" act like boosters
posNever:where(tokens=`never)&(next next s)|next s:tokens in`so`as`this;
valences:@[valences;posNever+/:2 3;*;1.5 1.25];
// tokens in NEGATE or ending in "n't"
i:where(tokens in sent.NEGATE)|tokens like"*n't";
valences:@[valences;1 2 3+\:i except posNever;*;sent.N_SCALAR];
// occurences of "least" that are not part of "at/very least"
j:where(tokens=`least)¬ prev tokens in`at`very;
valences:@[valences;j+1;*;sent.N_SCALAR];
-3_ valences}
// Load the dictionary of terms and their sentiment
// Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media
// Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
sent.lexicon :(!).("SF";"\t")0:`:nlp/vader/lexicon.txt;
sent.lexicon,:(!). flip(
(`$"the shit"; 3f);
(`$"the bomb"; 3f);
(`$"bad ass"; 1.5f);
(`$"yeah right"; -2f);
(`$"cut the mustard"; 2f);
(`$"kiss of death"; -1.5f);
(`$"hand to mouth"; -2f));
// Calculate sentiment of a sentence of short message
sent.score:{[text]
valences:sent.lexicon tokens:lower rawTokens:sent.tokenize text;
isUpperCase:(rawTokens=upper rawTokens)& rawTokens<>tokens;
upperIndices:where isUpperCase & not all isUpperCase;
valences[upperIndices]+:sent.ALLCAPS_INCR*signum valences upperIndices;
valences:sent.applyBoosters[tokens;isUpperCase;valences];
valences:sent.negationCheck[tokens;valences];
valences:sent.butCheck[tokens;valences];
sent.scoreValence[0f^valences;text]}
// Calculate sentiment given individual valences
sent.scoreValence:{[valences;text]
if[not count valences;:`compound`pos`neg`neu!0 0 0 0f];
compound:sum valences;
// Punctuation can increase the intensity of the sentiment
compound+:signum[compound]*punctAmplifier:sent.amplifyEP[text]+sent.amplifyQM text;
// Normalize score
compound:{x%sqrt 15+x*x}compound;
// Discriminate between positive, negative and neutral sentiment scores
positive:sum 1+valences where valences>0;
negative:sum -1+valences where valences<0;
neutral:count where valences=0;
// If punctuation affects the sentiment, apply emphasis to dominant sentiment
if[positive>abs negative;positive+:punctAmplifier];
if[positive<abs negative;negative-:punctAmplifier];
// Used to noramlize the pos, neg and neutral sentiment
total:positive+neutral+abs negative;
`compound`pos`neg`neu!(compound,abs(positive;negative;neutral)%total)}