-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path3_summarization_fine_tuning.py
183 lines (140 loc) · 5.09 KB
/
3_summarization_fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from huggingface_hub import login
from datasets import load_dataset, load_metric
import pandas as pd
import numpy as np
from datasets import Dataset
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainingArguments,
Seq2SeqTrainer,
)
import nltk
import numpy as np
import torch
torch.cuda.empty_cache()
nltk.download("punkt")
# Model Config
TOKEN = ""
MODEL_CHECKPOINT = "t5-small"
MAX_INPUT_LENGTH = 1024
MAX_TARGET_LENGTH = 128
CSV_FILE = "flat.csv"
TRAIN_SIZE = 0.8
MODEL_NAME = (
MODEL_CHECKPOINT.split("/")[-1] + "-" + CSV_FILE.split("/")[-1].split(".")[-2]
)
BATCH_SIZE = 2
LEARNING_RATE = 2e-5
DECAY = 0.01
EPOCHS = 10
PUSH_TO_HUB = True
FP16 = False
def create_dataset(FILE, TRAIN_SIZE):
try:
data = pd.read_csv(FILE, na_values=" ")
except:
print(f"Cannot Open {FILE}.")
return None
else:
data.fillna("-", inplace=True)
raw_datasets = Dataset.from_pandas(data)
raw_datasets = raw_datasets.train_test_split(train_size=TRAIN_SIZE)
return raw_datasets
def preprocess_function(examples):
tokenizer = AutoTokenizer.from_pretrained(
MODEL_CHECKPOINT, model_max_length=MAX_INPUT_LENGTH
)
prefix = "summarize: "
inputs = [prefix + doc for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, truncation=True)
# Setup the tokenizer for targets
labels = tokenizer(
text_target=examples["summary"], max_length=MAX_TARGET_LENGTH, truncation=True
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def compute_metrics(eval_pred):
# Loading Rouge Metric
metric = load_metric("rouge")
print("Loaded Rouge Metric")
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Rouge expects a newline after each sentence
decoded_preds = [
"\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds
]
decoded_labels = [
"\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels
]
result = metric.compute(
predictions=decoded_preds, references=decoded_labels, use_stemmer=True
)
# Extract a few results
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
# Add mean generated length
prediction_lens = [
np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions
]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
def huggingface_summarization():
try:
if PUSH_TO_HUB:
login(token=TOKEN)
except:
print("Invalid Huggingface Access Token")
else:
# Loading csv and Splitting that data
raw_datasets = create_dataset(CSV_FILE, TRAIN_SIZE)
if raw_datasets != None:
print(f"Loaded {CSV_FILE} Successfully(with Split Train Size {TRAIN_SIZE})")
# Loading AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_CHECKPOINT, model_max_length=MAX_INPUT_LENGTH
)
print(f"Loaded AutoTokenizer for {MODEL_CHECKPOINT} model")
# Tokenize Data
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
print("Tokenized Data Successfully")
# Loading Model
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_CHECKPOINT)
print(f"Loaded {MODEL_CHECKPOINT} successfully")
# Loading Data Collator
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
args = Seq2SeqTrainingArguments(
MODEL_NAME,
evaluation_strategy="epoch",
learning_rate=LEARNING_RATE,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
weight_decay=DECAY,
save_total_limit=3,
num_train_epochs=EPOCHS,
predict_with_generate=True,
fp16=FP16,
push_to_hub=PUSH_TO_HUB,
)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# Training Model
trainer.train()
print("Trained Model Successfully")
if PUSH_TO_HUB:
trainer.push_to_hub()
huggingface_summarization()
model_name = "awinml/t5-small-sec-10K"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
summary = pipeline(model=model_name, tokenizer=model_name)