假设您在部署后已设置以下环境变量:
export OPENAI_API_KEY=<API key>
export OPENAI_BASE_URL=<API base url>
API 示例:
你可以通过这个API 获取支持的models 列表。 另外,如果Amazon Bedrock有新模型加入后,你也可以用它来更新刷新模型列表。
Request 示例
curl -s $OPENAI_BASE_URL/models -H "Authorization: Bearer $OPENAI_API_KEY" | jq .data
Response 示例
[
...
{
"id": "anthropic.claude-3-5-sonnet-20240620-v1:0",
"created": 1734416893,
"object": "model",
"owned_by": "bedrock"
},
{
"id": "us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"created": 1734416893,
"object": "model",
"owned_by": "bedrock"
},
...
]
重要: 在使用此代理 API 之前,请仔细阅读以下几点:
- 如果您之前使用 OpenAI Embedding模型来创建向量,请注意切换到新模型可能没有那么直接。不同模型具有不同的维度(例如,embed-multilingual-v3.0 有 1024 个维度),即使对于相同的文本,它们也可能产生不同的结果。
- 如果您使用 OpenAI Embedding模型传入的是整数编码(例如与 LangChain 一起使用),此方案将尝试使用
tiktoken
进行解码以检索原始文本。但是,无法保证解码后的文本准确无误。 - 如果您对长文本使用 OpenAI Embedding,您应该验证 Bedrock 模型支持的最大Token数,例如为获得最佳性能,Bedrock 建议将文本长度限制在少于 512 个Token。
Request 示例
curl $OPENAI_BASE_URL/embeddings \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "text-embedding-ada-002",
"encoding_format": "float"
}'
Response 示例
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
-0.02279663,
-0.024612427,
0.012863159,
...
0.01612854,
0.0038928986
],
"index": 0
}
],
"model": "cohere.embed-multilingual-v3",
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
}
}
或者你可以使用OpenAI 的SDK
from openai import OpenAI
client = OpenAI()
def get_embedding(text, model="text-embedding-3-small"):
text = text.replace("\n", " ")
return client.embeddings.create(input=[text], model=model).data[0].embedding
text = "hello"
# will output like [0.003578186, 0.028717041, 0.031021118, -0.0014066696,...]
print(get_embedding(text))
或者 LangChain
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
)
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result[:5])
doc_result = embeddings.embed_documents([text])
print(doc_result[0][:5])
Request 示例
curl $OPENAI_BASE_URL/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "please identify and count all the objects in this images, list all the names"
},
{
"type": "image_url",
"image_url": {
"url": "https://github.com/aws-samples/bedrock-access-gateway/blob/main/assets/obj-detect.png?raw=true"
}
}
]
}
]
}'
如果您需要使用此API处理非公开图像,您可以先对图像进行base64编码,然后传递编码后的字符串。 将"image/jpeg"替换为实际的内容类型(content type)。目前仅支持"image/jpeg"、"image/png"、"image/gif"或"image/webp"。
curl $OPENAI_BASE_URL/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "please identify and count all the objects in this images, list all the names"
},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64,<your image data>"
}
}
]
}
]
}'
Response 示例
{
"id": "msg_01BY3wcz41x7XrKhxY3VzWke",
"created": 1712543069,
"model": "anthropic.claude-3-sonnet-20240229-v1:0",
"system_fingerprint": "fp",
"choices": [
{
"index": 0,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": "The image contains the following objects:\n\n1. A peach-colored short-sleeve button-up shirt\n2. An olive green plaid long coat/jacket\n3. A pair of white sneakers or canvas shoes\n4. A brown shoulder bag or purse\n5. A makeup brush or cosmetic applicator\n6. A tube or container (possibly lipstick or lip balm)\n7. A pair of sunglasses\n8. A thought bubble icon\n9. A footprint icon\n10. A leaf or plant icon\n11. A flower icon\n12. A cloud icon\n\nIn total, there are 12 distinct objects depicted in the illustrated scene."
}
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 197,
"completion_tokens": 147,
"total_tokens": 344
}
}
重要:在使用此代理API进行Tool Call之前,请仔细阅读以下几点:
- OpenAI 已经废弃使用Function Call,而推荐使用Tool Call,因此Function Call在此处不受支持,您应该改为Tool Call。
Request 示例
curl $OPENAI_BASE_URL/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "What is the weather like in Shanghai today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city or state which is required."
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location"
]
}
}
},
{
"type": "function",
"function": {
"name": "get_current_location",
"description": "Use this tool to get the current location if user does not provide a location",
"parameters": {
"type": "object",
"properties": {}
}
}
}
],
"tool_choice": "auto"
}'
Response 示例
{
"id": "msg_01PjrKDWhYGsrTNdeqzWd6D9",
"created": 1712543689,
"model": "anthropic.claude-3-sonnet-20240229-v1:0",
"system_fingerprint": "fp",
"choices": [
{
"index": 0,
"finish_reason": "stop",
"message": {
"role": "assistant",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": "{\"location\": \"Shanghai\", \"unit\": \"celsius\"}"
}
}
]
}
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 256,
"completion_tokens": 64,
"total_tokens": 320
}
}
You can try it with different questions, such as:
- Hello, who are you? (No tools are needed)
- What is the weather like today? (Should use get_current_location tool first)
重要: 使用此 reasoning 推理模式前,请仔细阅读以下要点。
- 目前仅 Claude 3.7 Sonnet / Deepseek R1 模型支持推理功能。使用前请确保所用模型支持推理。
- Claude 3.7 Sonnet 推理模式(或思考模式)默认未启用,您必须在请求中传递额外的 reasoning_effort 参数,参数值可选:low,medium, high。另外,请在请求中提供正确的 max_tokens(或 max_completion_tokens)参数。budget_tokens 基于 reasoning_effort 设置(低:30%,中:60%,高:100% 的max tokens),确保最小 budget_tokens 为 1,024,Anthropic 建议至少使用 4,000 个令牌以获得全面的推理。详情请参阅 Bedrock Document。
- Deepseek R1 会自动使用推理模式,不需要在中传递额外的 reasoning_effort 参数(否则会报错)
- 推理结果(思维链结果、思考过程)被添加到名为 'reasoning_content' 的额外标签中,这不是 OpenAI 官方支持的格式。此设计遵循 Deepseek Reasoning Model 的规范。未来可能会有所变动。
Request 示例
- Claude 3.7 Sonnet
curl $OPENAI_BASE_URL/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"messages": [
{
"role": "user",
"content": "which one is bigger, 3.9 or 3.11?"
}
],
"max_completion_tokens": 4096,
"reasoning_effort": "low",
"stream": false
}'
- DeepSeek R1
curl $OPENAI_BASE_URL/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "us.deepseek.r1-v1:0",
"messages": [
{
"role": "user",
"content": "which one is bigger, 3.9 or 3.11?"
}
],
"stream": false
}'
Response 示例
{
"id": "chatcmpl-83fb7a88",
"created": 1740545278,
"model": "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"system_fingerprint": "fp",
"choices": [
{
"index": 0,
"finish_reason": "stop",
"logprobs": null,
"message": {
"role": "assistant",
"content": "3.9 is bigger than 3.11.\n\nWhen comparing decimal numbers, we need to understand what these numbers actually represent:...",
"reasoning_content": "I need to compare the decimal numbers 3.9 and 3.11.\n\nFor decimal numbers, we first compare the whole number parts, and if they're equal, we compare the decimal parts. \n\nBoth numbers ..."
}
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 51,
"completion_tokens": 565,
"total_tokens": 616
}
}
或者使用 OpenAI SDK (请先运行pip3 install -U openai
升级到最新版本)
- Non-Streaming
from openai import OpenAI
client = OpenAI()
messages = [{"role": "user", "content": "which one is bigger, 3.9 or 3.11?"}]
response = client.chat.completions.create(
model="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=messages,
reasoning_effort="low",
max_completion_tokens=4096,
)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
- Streaming
from openai import OpenAI
client = OpenAI()
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
model="us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=messages,
reasoning_effort="low",
max_completion_tokens=4096,
stream=True,
)
reasoning_content = ""
content = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, 'reasoning_content') and chunk.choices[0].delta.reasoning_content:
reasoning_content += chunk.choices[0].delta.reasoning_content
elif chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content