-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata_util.py
147 lines (125 loc) · 4.77 KB
/
data_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
from datasets import load_dataset
from transformers import AutoTokenizer
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from functools import partial
from slapo.logger import get_logger
logger = get_logger("Data_Utils")
class LossTestDataset(Dataset):
def __init__(self, dataset, fn) -> None:
super().__init__()
self.dataset = dataset
self.fn = fn
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
entry = self.dataset[index]
return self.fn(entry)
def get_dataloader(
model_name,
dataset_name,
micro_batch_size,
enable_pipeline,
collate_fn=None,
getitem_fn=None,
cache_dir=None,
mpu=None,
max_seq_length=1024,
):
raw_dataset = load_dataset(
dataset_name.split("-")[0], dataset_name, cache_dir=cache_dir
)
if "bert" in model_name:
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
if "gpt" in model_name:
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
train, val = preprocessing_datasets(
raw_dataset, tokenizer, model_name, max_seq_length
)
train_dataset = LossTestDataset(train, getitem_fn)
val_dataset = LossTestDataset(val, getitem_fn)
num_replicas = None
rank = None
if mpu:
num_replicas = mpu.get_data_parallel_world_size()
rank = mpu.get_data_parallel_rank()
train_loader = DataLoader(
train_dataset,
batch_size=micro_batch_size,
sampler=DistributedSampler(train_dataset, num_replicas=num_replicas, rank=rank),
collate_fn=partial(collate_fn, enable_pipeline=enable_pipeline),
drop_last=True,
num_workers=2,
pin_memory=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=micro_batch_size,
sampler=DistributedSampler(val_dataset, num_replicas=num_replicas, rank=rank),
collate_fn=partial(collate_fn, enable_pipeline=enable_pipeline),
drop_last=True,
num_workers=2,
pin_memory=True,
)
return train_loader, val_loader
def preprocessing_datasets(datasets, tokenizer, model_name, max_seq_length=1024):
column_names = datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if tokenizer.model_max_length < max_seq_length:
logger.warn(
f"The tokenizer ({tokenizer.__class__.__name__}) has a maximum sequence "
f"length of {tokenizer.model_max_length}, which may not support "
f"`max_seq_length={max_seq_length}`"
)
# we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(
examples[text_column_name],
return_special_tokens_mask=True if "bert" in model_name else False,
)
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
num_proc=1,
remove_columns=column_names,
load_from_cache_file=True,
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
# max_seq_length.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= max_seq_length:
total_length = (total_length // max_seq_length) * max_seq_length
# Split by chunks of max_len.
result = {
k: [
t[i : i + max_seq_length]
for i in range(0, total_length, max_seq_length)
]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
load_from_cache_file=True,
)
return lm_datasets["train"], lm_datasets["validation"]
if __name__ == "__main__":
# some tests
train, val = get_dataloader("gpt-neo-2.7B", "wikitext-103-v1", 4, True)
for b in train:
print(b)
# import pdb; pdb.set_trace()