Skip to content

Latest commit

 

History

History
76 lines (55 loc) · 2.94 KB

File metadata and controls

76 lines (55 loc) · 2.94 KB

U^2-Net

input

input_image
(Image from https://github.com/NathanUA/U-2-Net/blob/master/test_data/test_images/girl.png)

  • Ailia input shape: (1, 320, 320, 3)

output

output_image

usage

Automatically downloads the tflite file on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 u2net.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 u2net.py --video VIDEO_PATH

You can select a pretrained model by specifying -a large(default) or -a small.

$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH -a small

When using ailia SDK 1.2.3 or earlier, you must use a lower accurate model by specifying --opset 10.

$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --opset 10

Add the --composite option if you want to combine the input image with the calculated alpha value.

$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --opset 11 --composite

Add the --float option if you want to use float32 model for higher precision.

$ python3 u2net.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --opset 11 --float

Reference

U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

Framework

TensorFlow 2.12.0

Netron

量子化モデル

floatモデル