- Shape : (1, 320, 320, 3)
- Range : [0.0, 1.0]
- category : [0,79]
- probablity : [0.0,1.0]
- position : x, y, w, h [0,1]
Automatically downloads the tflite file on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 efficientdet_lite.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 efficientdet_lite.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 efficientdet_lite.py --video VIDEO_PATH
pinto
automl
python3 model_inspect.py --runmode=saved_model --model_name=efficientdet-lite0 --ckpt_path=checkpoints/efficientdet-lite0 --saved_model_dir=checkpoints/efficientdet-lite0/tflite --tflite_path=checkpoints/efficientdet-lite0/tflite/efficientdet-lite0.tflite
edgeai
efficientdet_lite1_relu.tflite
Tensorflow 2.7.0
pinto (int8 / float)
- efficientdet_lite0_integer_quant.tflite
- efficientdet_lite0_float32.tflite
- efficientdet_lite1_integer_quant.tflite
- efficientdet_lite1_float32.tflite
automl (float)
edgeai (float)