-
Notifications
You must be signed in to change notification settings - Fork 326
/
spade-pytorch.py
520 lines (430 loc) · 17.6 KB
/
spade-pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import sys
import time
from collections import OrderedDict
import random
import pickle
import numpy as np
import cv2
from PIL import Image
from scipy.ndimage import gaussian_filter
from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
use_pytorch = False
try:
import torch
use_pytorch = True
except ModuleNotFoundError:
pass
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from image_utils import normalize_image # noqa: E402
from detector_utils import load_image # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'wide_resnet50_2.onnx'
MODEL_PATH = 'wide_resnet50_2.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/spade-pytorch/'
IMAGE_PATH = './bottle_000.png'
SAVE_IMAGE_PATH = './output.png'
IMAGE_RESIZE = 256
IMAGE_SIZE = 224
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('SPADE', IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
'-f', '--feat', metavar="PICKLE_FILE", default=None,
help='train set feature pkl files.'
)
parser.add_argument(
'-bs', '--batch_size', default=32,
help='batch size.'
)
parser.add_argument(
'-tr', '--train_dir', metavar="DIR", default="./train",
help='directory of the train files.'
)
parser.add_argument(
'-gt', '--gt_dir', metavar="DIR", default="./gt_masks",
help='directory of the ground truth mask files.'
)
parser.add_argument(
'-th', '--threshold', type=float, default=None,
help='threshold'
)
parser.add_argument(
'--seed', type=int, default=1024,
help='random seed'
)
parser.add_argument(
'-ag', '--aug', action='store_true',
help='process with augmentation.'
)
parser.add_argument(
'-an', '--aug_num', type=int, default=5,
help='specify the amplification number of augmentation.'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def calc_dist_matrix(x, y):
"""Calculate Euclidean distance matrix with torch.tensor"""
dist_matrix = x[:, None] - y[None, :]
dist_matrix = np.sum(np.power(dist_matrix, 2), axis=2)
dist_matrix = np.sqrt(dist_matrix)
return dist_matrix
def plot_fig(
file_list, test_imgs,
score_map,
gt_imgs, threshold, save_path):
for t_idx in range(len(file_list)):
image_path = file_list[t_idx]
test_img = test_imgs[t_idx]
test_gt = gt_imgs[t_idx]
test_pred = score_map[t_idx]
test_pred[test_pred <= threshold] = 0
test_pred[test_pred > threshold] = 1
test_pred_img = test_img.copy()
test_pred_img[test_pred == 0] = 0
fig_img, ax_img = plt.subplots(1, 4, figsize=(12, 4)) \
if test_gt is not None \
else plt.subplots(1, 3, figsize=(12, 4))
fig_img.subplots_adjust(left=0, right=1, bottom=0, top=1)
for ax_i in ax_img:
ax_i.axes.xaxis.set_visible(False)
ax_i.axes.yaxis.set_visible(False)
i = 0
ax_img[0].imshow(test_img)
ax_img[0].title.set_text('Image')
if test_gt is not None:
i = 1
ax_img[i].imshow(test_gt, cmap='gray')
ax_img[i].title.set_text('GroundTruth')
ax_img[i + 1].imshow(test_pred, cmap='gray')
ax_img[i + 1].title.set_text('Predicted mask')
ax_img[i + 2].imshow(test_pred_img)
ax_img[i + 2].title.set_text('Predicted anomalous image')
# plot result
p = get_savepath(save_path, image_path, ext='.png')
logger.info(f'saved at : {p}')
fig_img.savefig(p, dpi=100)
plt.close()
# ======================
# Main functions
# ======================
def preprocess(img, mask=False):
h, w = img.shape[:2]
size = IMAGE_RESIZE
crop_size = IMAGE_SIZE
# resize
if h > w:
size = (size, int(size * h / w))
else:
size = (int(size * w / h), size)
img = np.array(Image.fromarray(img).resize(
size, resample=Image.ANTIALIAS if not mask else Image.NEAREST))
# center crop
h, w = img.shape[:2]
pad_h = (h - crop_size) // 2
pad_w = (w - crop_size) // 2
img = img_cropped = img[pad_h:pad_h + crop_size, pad_w:pad_w + crop_size, ...]
# normalize
if not mask:
img = normalize_image(img.astype(np.float32), 'ImageNet')
img = img.transpose(2, 0, 1) # HWC -> CHW
else:
img = img / 255
img = np.expand_dims(img, axis=0)
return img, img_cropped
def preprocess_aug(img, mask=False, angle_range=[-10, 10], return_refs=False):
h, w = img.shape[:2]
size = IMAGE_RESIZE
crop_size = IMAGE_SIZE
# resize
if h > w:
size = (size, int(size * h / w))
else:
size = (int(size * w / h), size)
img = np.array(Image.fromarray(img).resize(
size, resample=Image.ANTIALIAS if not mask else Image.NEAREST))
# for visualize
img_resized = img.copy()
if not mask:
# random rotate
h, w = img.shape[:2]
angle = np.random.randint(angle_range[0], angle_range[0] + 1)
rot_mat = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
img = cv2.warpAffine(src=img,
M=rot_mat,
dsize=(w, h),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_LINEAR)
# random crop
h, w = img.shape[:2]
pad_h = np.random.randint(0, (h - crop_size))
pad_w = np.random.randint(0, (w - crop_size))
img = img[pad_h:pad_h + crop_size, pad_w:pad_w + crop_size, :]
# normalize
if not mask:
img = normalize_image(img.astype(np.float32), 'ImageNet')
img = img.transpose(2, 0, 1) # HWC -> CHW
else:
img = img / 255
img = np.expand_dims(img, axis=0)
if return_refs:
return img, img_resized, angle, pad_h, pad_w
else:
return img, img_resized
def get_train_outputs(net):
if args.feat:
logger.info('loading train set feature from: %s' % args.feat)
with open(args.feat, 'rb') as f:
train_outputs = pickle.load(f)
logger.info('loaded.')
return train_outputs
batch_size = int(args.batch_size)
train_dir = args.train_dir
train_imgs = sorted([
os.path.join(train_dir, f) for f in os.listdir(train_dir)
if f.endswith('.png') or f.endswith('.jpg') or f.endswith('.bmp')
])
if len(train_imgs) == 0:
logger.error("train images not found in '%s'" % train_dir)
sys.exit(-1)
if not args.aug:
logger.info('extract train set features without augmentation')
aug_num = 1
else:
logger.info('extract train set features with augmentation')
aug_num = args.aug_num
train_outputs = OrderedDict([
('layer1', []), ('layer2', []), ('layer3', []),
('avgpool', []),
])
for i_aug in range(aug_num):
for i_img in range(0, len(train_imgs), batch_size):
# prepare input data
imgs = []
if not args.aug:
logger.info('from (%s ~ %s) ' %
(train_imgs[i_img],
train_imgs[min(len(train_imgs) - 1,
i_img + batch_size)]))
else:
logger.info('from (%s ~ %s) on augmentation lap %d' %
(train_imgs[i_img],
train_imgs[min(len(train_imgs) - 1,
i_img + batch_size)], i_aug))
for image_path in train_imgs[i_img:i_img + batch_size]:
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
if not args.aug:
img, _ = preprocess(img)
else:
img, _ = preprocess_aug(img)
imgs.append(img)
imgs = np.vstack(imgs)
# inference
_ = net.predict(imgs)
feat_names = ("356", "398", "460", "493")
for key, name in zip(train_outputs.keys(), feat_names):
x = net.get_blob_data(name)
train_outputs[key].append(x)
for k, v in train_outputs.items():
train_outputs[k] = np.vstack(v)
# save learned distribution
train_feat_file = "%s.pkl" % os.path.basename(train_dir)
logger.info('saving train set feature to: %s ...' % train_feat_file)
with open(train_feat_file, 'wb') as f:
pickle.dump(train_outputs, f)
logger.info('saved.')
return train_outputs
def recognize_from_image(net):
batch_size = int(args.batch_size)
np.random.seed(args.seed)
train_outputs = get_train_outputs(net)
gt_type_dir = args.gt_dir if args.gt_dir else None
test_imgs = []
gt_imgs = []
gt_masks = []
if not args.aug:
logger.info('infer without augmentation')
aug_num = 1
else:
logger.info('infer with augmentation')
aug_num = args.aug_num
score_map_list = []
for i_aug in range(aug_num):
test_outputs = OrderedDict([
('layer1', []), ('layer2', []), ('layer3', []),
('avgpool', []),
])
aug_list = []
# batch loop
for i_img in range(0, len(args.input), batch_size):
# prepare input data
imgs = []
if not args.aug:
logger.info('from (%s ~ %s) ' %
(args.input[i_img],
args.input[min(len(args.input) - 1,
i_img + batch_size)]))
else:
logger.info('from (%s ~ %s) on augmentation lap %d' %
(args.input[i_img],
args.input[min(len(args.input) - 1,
i_img + batch_size)], i_aug))
for image_path in args.input[i_img:i_img + batch_size]:
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
if not args.aug:
img, vis_img = preprocess(img)
else:
(img, vis_img, angle,
pad_h, pad_w) = preprocess_aug(img, return_refs=True)
aug_list.append((angle, pad_h, pad_w))
imgs.append(img)
test_imgs.append(vis_img)
# ground truth
if i_aug == 0:
fname = os.path.splitext(os.path.basename(image_path))[0]
gt_fpath = os.path.join(gt_type_dir, fname + '_mask.png')
if os.path.exists(gt_fpath):
gt_img = load_image(gt_fpath)
gt_img = cv2.cvtColor(gt_img, cv2.COLOR_BGRA2GRAY)
if not args.aug:
gt_mask, gt_img = preprocess(gt_img, mask=True)
else:
gt_mask, gt_img = preprocess_aug(gt_img, mask=True)
else:
gt_img = np.zeros(
(IMAGE_SIZE, IMAGE_SIZE) if not args.aug
else (IMAGE_RESIZE, IMAGE_RESIZE))
gt_mask = gt_img[None, :, :]
gt_imgs.append(gt_img)
gt_masks.append(gt_mask)
imgs = np.vstack(imgs)
logger.debug(f'input images shape: {imgs.shape}')
# inference
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
_ = net.predict(imgs)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\taverage time {total_time / (args.benchmark_count - 1)} ms')
else:
_ = net.predict(imgs)
feat_names = ("356", "398", "460", "493")
for key, name in zip(test_outputs.keys(), feat_names):
x = net.get_blob_data(name)
test_outputs[key].append(x)
for k, v in test_outputs.items():
test_outputs[k] = np.vstack(v)
# calculate distance matrix
dist_matrix = calc_dist_matrix(
test_outputs['avgpool'].reshape(test_outputs['avgpool'].shape[0], -1),
train_outputs['avgpool'].reshape(train_outputs['avgpool'].shape[0], -1))
# select K nearest neighbor
top_k = 5
topk_indexes = np.argsort(dist_matrix, axis=1)
topk_indexes = topk_indexes[:, :top_k]
n = test_outputs['avgpool'].shape[0]
for t_idx in range(n):
logger.info("| localization | %s/%s | %s"
% (t_idx + 1, n, args.input[t_idx]))
score_maps = []
for layer_name in ['layer1', 'layer2', 'layer3']: # for each layer
# construct a gallery of features at all pixel locations of the K nearest neighbors
topk_feat_map = train_outputs[layer_name][topk_indexes[t_idx]]
test_feat_map = test_outputs[layer_name][t_idx:t_idx + 1]
feat_gallery = topk_feat_map.transpose(0, 3, 2, 1)
feat_gallery = feat_gallery.reshape(-1, feat_gallery.shape[-1])
feat_gallery = feat_gallery[:, :, None, None]
# calculate distance matrix
dist_matrix_list = []
if use_pytorch and torch.cuda.is_available():
feat_gallery = torch.tensor(feat_gallery, device='cuda')
test_feat_map = torch.tensor(test_feat_map, device='cuda')
for d_idx in range(feat_gallery.shape[0] // 100):
dist_matrix = torch.pow(torch.mean(torch.pow(
feat_gallery[d_idx * 100:d_idx * 100 + 100] - test_feat_map, 2), 1),
0.5)
dist_matrix_list.append(dist_matrix.cpu().detach().numpy())
else:
for d_idx in range(feat_gallery.shape[0] // 100):
dist_matrix = np.power(feat_gallery[d_idx * 100:d_idx * 100 + 100] - test_feat_map, 2)
dist_matrix = np.mean(dist_matrix, axis=1)
dist_matrix = np.sqrt(dist_matrix)
dist_matrix_list.append(dist_matrix)
dist_matrix = np.vstack(dist_matrix_list)
score_map = np.min(dist_matrix, axis=0)
score_map = np.asarray(
Image.fromarray(score_map).resize(
(IMAGE_SIZE, IMAGE_SIZE), resample=Image.BILINEAR))
score_map = score_map[None, None, :, :]
score_maps.append(score_map)
score_maps = np.vstack(score_maps)
score_map = np.mean(score_maps, axis=0)
if args.aug:
# reverse crop
angle, pad_top, pad_left = aug_list[t_idx]
pad_bottom = IMAGE_RESIZE - IMAGE_SIZE - pad_top
pad_right = IMAGE_RESIZE - IMAGE_SIZE - pad_left
score_map = np.pad(np.squeeze(score_map),
((pad_top, pad_bottom), (pad_left, pad_right)))
# reverse rotate
rot_mat = cv2.getRotationMatrix2D((IMAGE_RESIZE / 2, IMAGE_RESIZE / 2), -angle, 1)
score_map = cv2.warpAffine(src=score_map,
M=rot_mat,
dsize=(IMAGE_RESIZE, IMAGE_RESIZE),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_LINEAR)
score_map = score_map[None, :, :]
score_map_list.append(score_map)
if args.aug:
score_map = np.stack(score_map_list)
score_map = score_map.reshape(args.aug_num, -1, IMAGE_RESIZE, IMAGE_RESIZE)
score_map = np.mean(score_map, axis=0)
score_map_list = score_map[:, None, :, :]
# apply gaussian smoothing on the score map
for i in range(len(score_map_list)):
score_map_list[i] = gaussian_filter(score_map_list[i], sigma=4)
if args.threshold is None:
# get optimal threshold
flatten_gt_mask_list = np.concatenate(gt_masks).ravel()
flatten_score_map_list = np.concatenate(score_map_list).ravel()
# get optimal threshold
precision, recall, thresholds = precision_recall_curve(flatten_gt_mask_list, flatten_score_map_list)
a = 2 * precision * recall
b = precision + recall
f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0)
threshold = thresholds[np.argmax(f1)]
logger.info('Optimal threshold: %f' % threshold)
else:
threshold = args.threshold
score_map = np.vstack(score_map_list)
plot_fig(args.input, test_imgs, score_map, gt_imgs, threshold, args.savepath)
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# load model
env_id = args.env_id
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
recognize_from_image(net)
if __name__ == '__main__':
main()