-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathyolov4.py
272 lines (229 loc) · 9.44 KB
/
yolov4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import math
import sys
import time
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import plot_results, write_predictions # noqa: E402
from detector_utils import load_image, letterbox_convert, reverse_letterbox # noqa: E402
import webcamera_utils # noqa: E402
import yolov4_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
DETECTION_SIZE_LISTS = [416, 640, 1280]
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/yolov4/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.png'
COCO_CATEGORY = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard",
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard",
"surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork",
"knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
"couch", "potted plant", "bed", "dining table", "toilet", "tv",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave",
"oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
]
THRESHOLD = 0.4
IOU = 0.45
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Yolov4 model', IMAGE_PATH, SAVE_IMAGE_PATH,
)
parser.add_argument(
'-th', '--threshold',
default=THRESHOLD, type=float,
help='The detection threshold for yolo. (default: '+str(THRESHOLD)+')'
)
parser.add_argument(
'-iou', '--iou',
default=IOU, type=float,
help='The detection iou for yolo. (default: '+str(IOU)+')'
)
parser.add_argument(
'-w', '--write_prediction',
nargs='?',
const='txt',
choices=['txt', 'json'],
type=str,
help='Output results to txt or json file.'
)
parser.add_argument(
'-dw', '--detection_width', metavar='DETECTION_WIDTH',
default=DETECTION_SIZE_LISTS[0], choices=DETECTION_SIZE_LISTS, type=int,
help='detection size lists: ' + ' | '.join(map(str,DETECTION_SIZE_LISTS))
)
parser.add_argument(
'-dh', '--detection_height', metavar='DETECTION_HEIGHT',
default=DETECTION_SIZE_LISTS[0], choices=DETECTION_SIZE_LISTS, type=int,
help='detection size lists: ' + ' | '.join(map(str,DETECTION_SIZE_LISTS))
)
parser.add_argument(
'-dt', '--detector',
action='store_true',
help='Use detector API (require ailia SDK 1.2.7).'
)
args = update_parser(parser)
if args.detection_width != DETECTION_SIZE_LISTS[0] or args.detection_height!=DETECTION_SIZE_LISTS[0]:
WEIGHT_PATH = 'yolov4_'+str(args.detection_width)+'_'+str(args.detection_height)+'.onnx'
MODEL_PATH = 'yolov4_'+str(args.detection_width)+'_'+str(args.detection_height)+'.onnx.prototxt'
IMAGE_HEIGHT = args.detection_height
IMAGE_WIDTH = args.detection_width
else:
WEIGHT_PATH = 'yolov4.onnx'
MODEL_PATH = 'yolov4.onnx.prototxt'
IMAGE_HEIGHT = args.detection_height
IMAGE_WIDTH = args.detection_width
# ======================
# Main functions
# ======================
def recognize_from_image(detector):
if args.profile:
detector.set_profile_mode(True)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
org_img = load_image(image_path)
if not args.detector:
org_img = cv2.cvtColor(org_img, cv2.COLOR_BGRA2BGR)
logger.debug(f'input image shape: {org_img.shape}')
img = letterbox_convert(org_img, (IMAGE_HEIGHT, IMAGE_WIDTH))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1])
img = img.astype(np.float32) / 255
img = np.expand_dims(img, 0)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
if args.detector:
detector.compute(org_img, args.threshold, args.iou)
else:
output = detector.predict([img])
end = int(round(time.time() * 1000))
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\tailia processing time {end - start} ms')
logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
else:
if args.detector:
detector.compute(org_img, args.threshold, args.iou)
else:
output = detector.predict([img])
if not args.detector:
detect_object = yolov4_utils.post_processing(img, args.threshold, args.iou, output)
detect_object = reverse_letterbox(detect_object[0], org_img, (IMAGE_HEIGHT,IMAGE_WIDTH))
res_img = plot_results(detect_object, org_img, COCO_CATEGORY)
else:
res_img = plot_results(detector, org_img, COCO_CATEGORY)
# plot result
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
# write prediction
if args.write_prediction is not None:
ext = args.write_prediction
pred_file = "%s.%s" % (savepath.rsplit('.', 1)[0], ext)
write_predictions(pred_file, detector if args.detector else detect_object, org_img, category=COCO_CATEGORY, file_type=ext)
if args.profile:
print(detector.get_summary())
logger.info('Script finished successfully.')
def recognize_from_video(detector):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
if args.write_prediction is not None:
frame_count = 0
frame_digit = int(math.log10(capture.get(cv2.CAP_PROP_FRAME_COUNT)) + 1)
video_name = os.path.splitext(os.path.basename(args.video))[0]
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
if args.detector:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
detector.compute(img, args.threshold, args.iou)
res_img = plot_results(detector, frame, COCO_CATEGORY)
else:
img = letterbox_convert(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1])
img = img.astype(np.float32) / 255
img = np.expand_dims(img, 0)
output = detector.predict([img])
detect_object = yolov4_utils.post_processing(
img, args.threshold, args.iou, output
)
detect_object = reverse_letterbox(detect_object[0], frame, (IMAGE_HEIGHT,IMAGE_WIDTH))
res_img = plot_results(detect_object, frame, COCO_CATEGORY)
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(res_img)
# write prediction
if args.write_prediction is not None:
savepath = get_savepath(args.savepath, video_name, post_fix = '_%s' % (str(frame_count).zfill(frame_digit) + '_res'), ext='.png')
ext = args.write_prediction
pred_file = "%s.%s" % (savepath.rsplit('.', 1)[0], ext)
write_predictions(pred_file, detector if args.detector else detect_object, frame, category=COCO_CATEGORY, file_type=ext)
frame_count += 1
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
if args.detector:
detector = ailia.Detector(
MODEL_PATH,
WEIGHT_PATH,
len(COCO_CATEGORY),
format=ailia.NETWORK_IMAGE_FORMAT_RGB,
channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
algorithm=ailia.DETECTOR_ALGORITHM_YOLOV4,
env_id=args.env_id,
)
else:
detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
detector.set_input_shape((1, 3, IMAGE_HEIGHT, IMAGE_WIDTH))
if args.video is not None:
# video mode
recognize_from_video(detector)
else:
# image mode
recognize_from_image(detector)
if __name__ == '__main__':
main()