-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathhat.py
221 lines (174 loc) · 6.36 KB
/
hat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import sys
import cv2
import time
import numpy as np
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from image_utils import imread # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'input.png'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 256
# ======================
# Argument Parser Config
# ======================
parser = get_base_parser(
'Single Image Super-Resolution with HAT', IMAGE_PATH, SAVE_IMAGE_PATH, fp16_support=False
)
parser.add_argument(
'--arch', default="HAT", type=str, choices=["HAT","HAT_S","HAT_GAN_REAL_sharper","HAT_GAN_REAL"],
)
parser.add_argument(
'--scale', default=2, type=int, choices=[2,3,4],
help=('Super-resolution scale. By default 2 (generates an image with twice the resolution).')
)
args = update_parser(parser)
# ======================
# Parameters 2
# ======================
if args.arch == "HAT_GAN_REAL_sharper" or args.arch == "HAT_GAN_REAL":
WEIGHT_PATH = args.arch + '.onnx'
MODEL_PATH = WEIGHT_PATH + ".prototxt"
args.scale = 4
else:
WEIGHT_PATH = args.arch + "_x" + str(args.scale) + '.onnx'
MODEL_PATH = WEIGHT_PATH + ".prototxt"
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/hat/'
# ======================
# Main functions
# ======================
class HATModel():
def __init__(self,net):
self.net = net
def pre_process(self,image):
image = np.expand_dims(image, 0)
window_size = 16
self.scale = args.scale
self.mod_pad_h, self.mod_pad_w = 0, 0
_, _, h, w = image.shape
if h % window_size != 0:
self.mod_pad_h = window_size - h % window_size
if w % window_size != 0:
self.mod_pad_w = window_size - w % window_size
self.img = np.pad(image, (self.mod_pad_w, self.mod_pad_h), mode='reflect')
def process(self):
self.output = np.array(self.net.run(self.img)[0])
def post_process(self):
_, _, h, w = self.output.shape
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
def nondist_validation(self,image):
self.pre_process(image)
self.process()
self.post_process()
sr_img = tensor2img([self.output])
return sr_img
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
result = []
tensor = np.clip(tensor[0],min_max[0],min_max[1])
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
img_np = tensor[0]
img_np = img_np.transpose(1, 2, 0)
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def recognize_from_image(net):
hat = HATModel(net)
for image_path in args.input:
# prepare input data
logger.info('Input image: ' + image_path)
# preprocessing
img = imread(image_path)
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
c = img.shape[2]
if c == 1:
img = np.concatenate([img] * 3, 2)
img =img.transpose((2,0,1)) / 255
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
preds_ailia = hat.nondist_validation(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
preds_ailia = hat.nondist_validation(img)
# postprocessing
preds_ailia = cv2.cvtColor(preds_ailia, cv2.COLOR_RGB2BGR)
output_img = preds_ailia
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, output_img)
logger.info('Script finished successfully.')
def recognize_from_video(net):
hat = HATModel(net)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT) * int(args.scale))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH) * int(args.scale))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('output', cv2.WND_PROP_VISIBLE) == 0:
break
# resize with keep aspect
frame,resized_img = webcamera_utils.adjust_frame_size(frame, IMAGE_HEIGHT, IMAGE_WIDTH)
# preprocessing
img = resized_img
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
c = img.shape[2]
if c == 1:
img = np.concatenate([img] * 3, 2)
img =img.transpose((2,0,1)) / 255
preds_ailia = hat.nondist_validation(img)
out_img = cv2.cvtColor(preds_ailia, cv2.COLOR_RGB2BGR)
cv2.imshow('output', out_img)
frame_shown = True
# save results
if writer is not None:
writer.write(out_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
memory_mode = ailia.get_memory_mode(reduce_constant=True, reduce_interstage=True)
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, memory_mode=memory_mode)
logger.info('Model: ' + WEIGHT_PATH[:-5])
logger.info('Scale: ' + str(args.scale))
if args.video is not None:
# video mode
recognize_from_video(net)
else:
# image mode
recognize_from_image(net)
if __name__ == '__main__':
main()