-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasterSaveAll.m
76 lines (70 loc) · 4.04 KB
/
masterSaveAll.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Citation: If you use this code, please cite the associated paper [1]
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
%
% References:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
%
% MASTER SAVE ALL
% This function saves the information of multiple runnings given an
% experimental design for ACROTSS algorithm.
% Summary information are saved in resultsMultipleRunnings.csv file
% Summary models are saved in informationMultipleRunnings.mat file
function masterSaveAll(folder,model)
fid = fopen([folder filesep 'resultsMultipleRunnings.csv'],'wt');
fprintf(fid,'#Run;NumberSegments;Init_RMSE;Init_RMSEp;Init_MAXe;Init_Fitnnes;');
fprintf(fid,'CRO_RMSE;CRO_RMSEp;CRO_MAXe;CRO_Fitnnes;');
fprintf(fid,'BU_RMSE;BU_RMSEp;BU_MAXe;BU_Fitnnes;');
fprintf(fid,'HA_RMSE;HA_RMSEp;HA_MAXe;HA_Fitnnes\n');
if (numel(model)>1),
for i=1:numel(model),
numSegments(i) = numel(model(i).cuts)+1;
Init_RMSE(i) = model(i).errorsInit(1);
Init_RMSEp(i) = model(i).errorsInit(2);
Init_MAXe(i) = model(i).errorsInit(3);
Init_Fitness(i) = model(i).bestFitness(1);
GA_RMSE(i) = model(i).errorsGA(1);
GA_RMSEp(i) = model(i).errorsGA(2);
GA_MAXe(i) = model(i).errorsGA(3);
GA_Fitness(i) = model(i).fitnessGA;
BU_RMSE(i) = model(i).errorsBU(1);
BU_RMSEp(i) = model(i).errorsBU(2);
BU_MAXe(i) = model(i).errorsBU(3);
BU_Fitness(i) = model(i).fitnessBU;
HA_RMSE(i) = model(i).errorsHA(1);
HA_RMSEp(i) = model(i).errorsHA(2);
HA_MAXe(i) = model(i).errorsHA(3);
HA_Fitness(i) = model(i).fitnessHA;
fprintf(fid,'%d;%d;%f;%f;%f;%f;',i,numSegments(i),Init_RMSE(i),Init_RMSEp(i),Init_MAXe(i),Init_Fitness(i));
fprintf(fid,'%f;%f;%f;%f;',GA_RMSE(i),GA_RMSEp(i),GA_MAXe(i),GA_Fitness(i));
fprintf(fid,'%f;%f;%f;%f;',BU_RMSE(i),BU_RMSEp(i),BU_MAXe(i),BU_Fitness(i));
fprintf(fid,'%f;%f;%f;%f\n',HA_RMSE(i),HA_RMSEp(i),HA_MAXe(i),HA_Fitness(i));
end
fprintf(fid,'Mean;%f;',mean(numSegments));
fprintf(fid,'%f;%f;%f;%f;',mean(Init_RMSE),mean(Init_RMSEp),mean(Init_MAXe),mean(Init_Fitness));
fprintf(fid,'%f;%f;%f;%f;',mean(GA_RMSE),mean(GA_RMSEp),mean(GA_MAXe),mean(GA_Fitness));
fprintf(fid,'%f;%f;%f;%f;',mean(BU_RMSE),mean(BU_RMSEp),mean(BU_MAXe),mean(BU_Fitness));
fprintf(fid,'%f;%f;%f;%f\n',mean(HA_RMSE),mean(HA_RMSEp),mean(HA_MAXe),mean(HA_Fitness));
fprintf(fid,'Std;%f;',std(numSegments));
fprintf(fid,'%f;%f;%f;%f;',std(Init_RMSE),std(Init_RMSEp),std(Init_MAXe),std(Init_Fitness));
fprintf(fid,'%f;%f;%f;%f;',std(GA_RMSE),std(GA_RMSEp),std(GA_MAXe),std(GA_Fitness));
fprintf(fid,'%f;%f;%f;%f;',std(BU_RMSE),std(BU_RMSEp),std(BU_MAXe),std(BU_Fitness));
fprintf(fid,'%f;%f;%f;%f\n',std(HA_RMSE),std(HA_RMSEp),std(HA_MAXe),std(HA_Fitness));
else
fprintf(fid,'1;%d;',numel(model.cuts)+1);
fprintf(fid,'%f;%f;%f;%f;',model.errorsInit(1),model.errorsInit(2),model.errorsInit(3),model.bestFitness(1));
fprintf(fid,'%f;%f;%f;%f;',model.errorsGA(1),model.errorsGA(2),model.errorsGA(3),model.fitnessGA);
fprintf(fid,'%f;%f;%f;%f;',model.errorsBU(1),model.errorsBU(2),model.errorsBU(3),model.fitnessBU);
fprintf(fid,'%f;%f;%f;%f\n',model.errorsHA(1),model.errorsHA(2),model.errorsHA(3),model.fitnessHA);
end
fclose(fid);
save([folder filesep 'informationMultipleRunnings.mat'], 'model');
end