-
Notifications
You must be signed in to change notification settings - Fork 0
/
saveCentroids.m
75 lines (70 loc) · 3.08 KB
/
saveCentroids.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] M. Pérez-Ortiz, A.M. Durán-Rosal, P.A. Gutiérrez, et al.
% "On the use of evolutionary time series analysis for segmenting paleoclimate data"
% Neurocomputing, Vol. 326-327, January, 2019, pp. 3-14
% https://doi.org/10.1016/j.neucom.2016.11.101
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, J.C. Fernández, P.A. Gutiérrez and C. Hervás-Martínez.
% "Detection and prediction of segments containing extreme significant wave heights"
% Ocean Engineering, Vol. 142, September, 2017, pp. 268-279.
% https://doi.org/10.1016/j.oceaneng.2017.07.009
% [4] A.M. Durán-Rosal, M. de la Paz Marín, P.A. Gutiérrez and C. Hervás-Martínez.
% "Identifying market behaviours using European Stock Index time series by
% a hybrid segmentation algorithm", Neural Processing Letters,
% Vol. 46, December, 2017, pp. 767–790.
% https://doi.org/10.1007/s11063-017-9592-8
%
%% saveCentroids
% Function: Save the centroids of a segmentation in two files (normalized and unnormalized)
%
% Input:
% model: contains the information necessary for the reporter
% dataset: name of the dataset
% repsuffix: path of the output file
%
% Output:
% No output variables. Only two files which contain the saved centroids (normalized and unnormalized)
function saveCentroids(model, dataset, repsuffix)
outputFile = [repsuffix filesep dataset];
centroids = model.C;
centroidsNorm = centroids;
nOfClusters = numel(centroids(:,1));
nOfFeatures = numel(centroids(1,:));
%Unnormalize centroids
for j=1:nOfFeatures,
maximo=max(model.features(:,j));
minimo=min(model.features(:,j));
for i=1:nOfClusters,
centroids(i,j)=(centroids(i,j)*(maximo-minimo))+minimo;
end
end
% Save centroids
f = fopen([outputFile '_centroids.csv'], 'wt');
for i=1:nOfClusters
fprintf(f, '%d;', i);
for j=1:nOfFeatures-1,
fprintf(f, '%f;', centroids(i,j));
end
fprintf(f, '%f\n', centroids(i,end));
end
fclose(f);
% Save Normalised centroids
f = fopen([outputFile '_centroidsNorm.csv'], 'wt');
for i=1:nOfClusters
fprintf(f, '%d;', i);
for j=1:nOfFeatures-1,
fprintf(f, '%f;', centroidsNorm(i,j));
end
fprintf(f, '%f\n', centroidsNorm(i,end));
end
fclose(f);
end