-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTop_Down_Fast.m
79 lines (75 loc) · 3.18 KB
/
Top_Down_Fast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
%
%% Top_Down_Fast
% Function: Performance of the Top Down algorithm given a number of segments
%
% Input:
% segment: values of the time series
% numSeg: number of segments
% x: time indexes (horizontal)
% y: time indexes (vertical)
% matrix: precomputed matrix distances
%
% Output:
% chromosome: segmentation by the Top Down algorithm
function [chromosome] = Top_Down_Fast(numSeg,x,y,matrix)
chromosome=zeros(1,numel(y));
gain_cost = zeros(1,numel(y));
max_iter=numSeg-1;
base = returnOneErrorFast(1,numel(chromosome),x,y,matrix);
for j=2:numel(chromosome),
gain_cost(1,j) = base - (returnOneErrorFast(1,j,x,y,matrix) + returnOneErrorFast(j,numel(chromosome),x,y,matrix));
end
gain_cost(1,1)=-Inf;
gain_cost(1,end)=-Inf;
iterations = 0;
while iterations < max_iter,
ind = find(gain_cost==max(gain_cost),1);
if ind ==1,
fprintf('Error');
end
chromosome(1,ind)=1;
left = find(chromosome(1:ind-1)==1,1,'last');
if isempty(left),
left=1;
end
right = find(chromosome(ind+1:end)==1,1,'first');
if isempty(right),
right=numel(chromosome);
else
right=right+ind;
end
base = returnOneErrorFast(left,ind,x,y,matrix);
for j=left:ind,
gain_cost(1,j)=base - (returnOneErrorFast(left,j,x,y,matrix)+returnOneErrorFast(j,ind,x,y,matrix));
end
base = returnOneErrorFast(ind,right,x,y,matrix);
for j=ind:right,
gain_cost(1,j)=base - (returnOneErrorFast(ind,j,x,y,matrix)+returnOneErrorFast(j,right,x,y,matrix));
end
gain_cost(1,ind)=-Inf;
gain_cost(1,left)=-Inf;
gain_cost(1,right)=-Inf;
iterations=iterations+1;
end
end