-
Notifications
You must be signed in to change notification settings - Fork 0
/
checkPopulation.m
44 lines (44 loc) · 2.19 KB
/
checkPopulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
%
%% checkPopulation
% Function: Check the chromosomes are in the feasible area of the problem
%
% Input:
% newCurrentPopulationInt: currentPopulation
% currentPopulationInt: currentPopulation of the previous iteration
% oldFitness: fitness
% nPobl: population size
% sizeChromosome: binary chromosome length
%
% Output:
% newCurrentPopulationInt: new integer population
% newFitness: new fitness
function [newCurrentPopulationInt, newFitness] = checkPopulation(newCurrentPopulationInt, currentPopulationInt,oldFitness,nPobl,sizeChromosome)
newFitness = oldFitness*NaN;
for i=1:nPobl,
ind = round(newCurrentPopulationInt(i,:));
if numel(find(ind > sizeChromosome-1)) > 0 || numel(find(ind < 2)) > 0,
minNew=min(newCurrentPopulationInt(i,:));
maxNew=max(newCurrentPopulationInt(i,:));
minCurrent = min(currentPopulationInt(i,:));
maxCurrent = max(currentPopulationInt(i,:));
newCurrentPopulationInt(i,:)=(newCurrentPopulationInt(i,:)-minNew)/(maxNew - minNew)*(maxCurrent-minCurrent)+minCurrent;
end
end
end