-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeErrors.m
73 lines (68 loc) · 3.39 KB
/
computeErrors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
% [2] M. Pérez-Ortiz, A.M. Durán-Rosal, P.A. Gutiérrez, et al.
% "On the use of evolutionary time series analysis for segmenting paleoclimate data"
% Neurocomputing, Vol. 326-327, January, 2019, pp. 3-14
% https://doi.org/10.1016/j.neucom.2016.11.101
% [3] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [4] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
% [5] A.M. Durán-Rosal, J.C. Fernández, P.A. Gutiérrez and C. Hervás-Martínez.
% "Detection and prediction of segments containing extreme significant wave heights"
% Ocean Engineering, Vol. 142, September, 2017, pp. 268-279.
% https://doi.org/10.1016/j.oceaneng.2017.07.009
% [6] A.M. Durán-Rosal, M. de la Paz Marín, P.A. Gutiérrez and C. Hervás-Martínez.
% "Identifying market behaviours using European Stock Index time series by
% a hybrid segmentation algorithm", Neural Processing Letters,
% Vol. 46, December, 2017, pp. 767–790.
% https://doi.org/10.1007/s11063-017-9592-8
%
%% computeErrors
% Function: Error values for a segmentation
%
% Input:
% individual: chromosome (segmentation)
% serie: time series
% degree: degree of approximation
%
% Output:
% errors: array formed by [RMSE, RMSEp, MAXe]
function [errors] = computeErrors(individual,serie,degree)
ind = find(individual==1);
nOfSegments = size(ind,2);
errors = zeros(1,3);
errorsRMSE = zeros(nOfSegments+1,1);
errorsRMSEp = zeros(nOfSegments+1,1);
errorsMAXe = zeros(nOfSegments+1,1);
[errorsRMSE(1,1), errorsRMSEp(1,1), errorsMAXe(1,1)] = errorsSegment(serie(1:ind(1)),degree);
% Number of Segments - 1
for j=1:nOfSegments-1,
[errorsRMSE(j+1,1), errorsRMSEp(j+1,1), errorsMAXe(j+1,1) ] = errorsSegment(serie(ind(j):ind(j+1)),degree);
end
[errorsRMSE(end,1), errorsRMSEp(end,1), errorsMAXe(end,1)] = errorsSegment(serie(ind(end):end),degree);
MSE=mean(errorsRMSE);
RMSE=sqrt(MSE);
MSEp=sum(errorsRMSEp)/numel(individual);
RMSEp=sqrt(MSEp);
MAXe=max(errorsMAXe);
MAXe=sqrt(MAXe);
errors(1)=RMSE;
errors(2)=RMSEp;
errors(3)=MAXe;
end