-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluateFitnessError.m
46 lines (46 loc) · 2.19 KB
/
evaluateFitnessError.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
%
%% evaluateFitnessError
% Function: Evaluation method for approximation error
%
% Input:
% typeError: type of error (RMSE, RMSEp, MAXe) (see function computeErrors)
% population: set of chromosomes
% oldFitness: fitness of population
% serie: time series
% degree: degree of approximation
%
% Output:
% fitness: fitness of current population
function [fitness] = evaluateFitnessError(typeError,population,oldFitness,serie,degree)
fitness = zeros(1,size(population,1));
%fitness = oldFitness;
for i=1:size(population,1),
if isnan(oldFitness(i)),
[errors] = computeErrors(population(i,:),serie,degree);
fitness(i) = fitnessError(errors,typeError);
elseif oldFitness(i) == -1,
fitness(i) = -1;
end
end
end