-
Notifications
You must be signed in to change notification settings - Fork 0
/
hybridIndividualBottomUpFast.m
77 lines (75 loc) · 3.47 KB
/
hybridIndividualBottomUpFast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] A.M. Durán-Rosal, P.A. Gutiérrez, Á. Carmona-Poyato and C. Hervás-Martínez.
% "A hybrid dynamic exploitation barebones particle swarm optimisation
% algorithm for time series segmentation", Neurocomputing,
% Vol. 353, August, 2019, pp. 45-55.
% https://doi.org/10.1016/j.neucom.2018.05.129
% [2] A.M. Durán-Rosal, P.A. Gutiérrez, F.J. Martínez-Estudillo and C. Hervás-Martínez.
% "Simultaneous optimisation of clustering quality and approximation error
% for time series segmentation", Information Sciences, Vol. 442-443, May, 2018, pp. 186-201.
% https://doi.org/10.1016/j.ins.2018.02.041
% [3] A.M. Durán-Rosal, P.A. Gutiérrez, S. Salcedo-Sanz and C. Hervás-Martínez.
% "A statistically-driven Coral Reef Optimization algorithm for optimal
% size reduction of time series", Applied Soft Computing,
% Vol. 63. 2018, pp. 139-153.
% https://doi.org/10.1016/j.asoc.2017.11.037
%
%% hybridIndividualBottomUpFast
% Function: Remove some cut points in a chromosome with Bottom-Up algorithm
%
% Input:
% chromosome: segmentation
% max_iter: number of points to be added
% x: time indexes (horizontal)
% y: time indexes (vertical)
% matrix: precomputed matrix distances
%
% Output:
% chromosome: hybridized chromosome
function [chromosome] = hybridIndividualBottomUpFast(chromosome,max_iter,x,y,matrix)
chromosome(1,1)=0;
chromosome(1,end)=0;
indexes = find(chromosome == 1);
if numel(indexes) > 10,
merge_cost = zeros(1,numel(indexes));
merge_cost(1,1)=returnOneErrorFast(1,indexes(2),x,y,matrix);
for i=2:numel(indexes)-1,
merge_cost(i)=returnOneErrorFast(indexes(i-1),indexes(i+1),x,y,matrix);
end
merge_cost(1,end)=returnOneErrorFast(indexes(i-1),numel(chromosome),x,y,matrix);
iterations=0;
while iterations < max_iter,
ind = find(merge_cost==min(merge_cost),1);
if ind == 2,
merge_cost(ind-1)=returnOneErrorFast(1,indexes(ind+1),x,y,matrix);
elseif ind > 2,
if ind == numel(merge_cost),
merge_cost(ind-1)=returnOneErrorFast(indexes(ind-2),numel(chromosome),x,y,matrix);
else
merge_cost(ind-1)=returnOneErrorFast(indexes(ind-2),indexes(ind+1),x,y,matrix);
end
end
if ind == (numel(merge_cost)-1),
merge_cost(ind+1)=returnOneErrorFast(indexes(ind-1),numel(chromosome),x,y,matrix);
elseif ind < (numel(merge_cost)-1),
if ind == 1,
merge_cost(ind+1)=returnOneErrorFast(1,indexes(ind+2),x,y,matrix);
else
merge_cost(ind+1)=returnOneErrorFast(indexes(ind-1),indexes(ind+2),x,y,matrix);
end
end
chromosome(1,indexes(ind))=0;
merge_cost(ind)=[];
indexes(ind)=[];
iterations=iterations+1;
end
chromosome(1,1)=0;
chromosome(1,end)=0;
end
end