-
Notifications
You must be signed in to change notification settings - Fork 0
/
selection1Roulette.m
47 lines (46 loc) · 2.14 KB
/
selection1Roulette.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
% COPYRIGHT
% This file is part of TSSA: https://github.com/ayrna/tssa
% Original authors: Antonio M. Duran Rosal, Pedro A. Gutierrez
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
% Citation: If you use this code, please cite any of the following papers:
% [1] M. Pérez-Ortiz, A.M. Durán-Rosal, P.A. Gutiérrez, et al.
% "On the use of evolutionary time series analysis for segmenting paleoclimate data"
% Neurocomputing, Vol. 326-327, January, 2019, pp. 3-14
% https://doi.org/10.1016/j.neucom.2016.11.101
% [2] A.M. Durán-Rosal, J.C. Fernández, P.A. Gutiérrez and C. Hervás-Martínez.
% "Detection and prediction of segments containing extreme significant wave heights"
% Ocean Engineering, Vol. 142, September, 2017, pp. 268-279.
% https://doi.org/10.1016/j.oceaneng.2017.07.009
% [3] A.M. Durán-Rosal, M. de la Paz Marín, P.A. Gutiérrez and C. Hervás-Martínez.
% "Identifying market behaviours using European Stock Index time series by
% a hybrid segmentation algorithm", Neural Processing Letters,
% Vol. 46, December, 2017, pp. 767–790.
% https://doi.org/10.1007/s11063-017-9592-8
%
%% selection1Roulette
% Function: Performance a selection by a probabilistic roulette wheel
%
% Input:
% population: set of chromosomes
% fitness: fitness of each individual
% nPobl: population size
%
% Output:
% newPopulation: selected population
% newFitness: fitness of the new population
function [newPopulation,newFitness] = selection1Roulette(population,fitness,nPobl)
[fbest,indBestSegmentation] = max(fitness);
newPopulation(1,:) = population(indBestSegmentation,:);
newFitness = zeros(1,nPobl);
newFitness(1) = fbest;
cumFitness = cumsum(fitness);
randCums = cumFitness(end).*rand(1,nPobl);
for i=2:nPobl,
% Roulette
index1 = find((cumFitness > randCums(i))==1);
newPopulation(i,:) = population(index1(1),:);
newFitness(i) = fitness(index1(1));
end
end