-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion.py
70 lines (57 loc) · 1.83 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from models import UNet
from models import get_position_embeddings
from utils import print_stats
from copy import deepcopy
from flax import linen as nn
from typing import Optional
import jax.numpy as jnp
from jax import random
from tqdm import tqdm
import jax
class Diffusion(nn.Module):
sqrt_alpha_hat_ts: float
sqrt_alpha_hat_ts_2: float
alpha_ts: float
beta_ts: float
post_std: float
n_channels: int
n_classes: int
bilinear: Optional[bool] = False
class_conditioned: Optional[bool] = False
def setup(self):
self.model = UNet(self.n_channels, self.n_classes, bilinear=False)
self.sqrt_alpha_ts = jnp.sqrt(self.alpha_ts)
self.sigma_ts = jnp.sqrt(self.beta_ts)
self.alpha_ts_2 = 1 - self.alpha_ts
def __call__(self, x, t, t_embed, eps, y=None, train=True):
c1 = jnp.expand_dims(
jnp.expand_dims(
jnp.expand_dims(
jnp.take_along_axis(self.sqrt_alpha_hat_ts, jnp.squeeze(t, -1), 0),
-1,
),
-1,
),
-1,
)
# TODO, move this to the dataset itself instead of using gather
c2 = jnp.expand_dims(
jnp.expand_dims(
jnp.expand_dims(
jnp.take_along_axis(
self.sqrt_alpha_hat_ts_2, jnp.squeeze(t, -1), 0
),
-1,
),
-1,
),
-1,
)
input_x = x * c1 + eps * c2
if self.class_conditioned:
eps_pred = self.model(input_x, t_embed, y, train)
else:
eps_pred = self.model(input_x, t_embed, None, train)
return eps_pred
def forward(self, x, t_embed, y=None, train=True):
return self.model(x, t_embed, y, train)