-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathtrain_Stack.py
79 lines (65 loc) · 2.72 KB
/
train_Stack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
################################################################################
# MC-GAN
# Modified from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
# By Samaneh Azadi
################################################################################
import time
from options.train_options import TrainOptions
opt = TrainOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
from models.models import create_model
from util.visualizer import Visualizer
from data.data_loader import CreateDataLoader
opt.stack = True
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
opt.use_dropout = False
opt.use_dropout1 = True
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
epoch =int(opt.which_epoch1)
epoch0 = epoch
print "starting propagating back to the first network with starting lr %s ..."%opt.lr
opt.lr = opt.lr
opt.continue_train = False
opt.use_dropout = True
opt.use_dropout1 = True
model = create_model(opt)
visualizer = Visualizer(opt)
print('saving the model at the end of epoch %d, iters %d' %
(epoch0, total_steps))
model.save(epoch0)
for epoch in range(1, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter = total_steps - dataset_size * (epoch - 1)
model.set_input(data)
if not opt.no_Style2Glyph:
model.optimize_parameters_Stacked(epoch)
else:
model.optimize_parameters(epoch)
if total_steps % opt.display_freq == 0:
visualizer.display_current_results(model.get_current_visuals(), epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch+epoch0, total_steps))
model.save('latest')
if (epoch % opt.save_epoch_freq == 0):# or (epoch<20):
print('saving the model at the end of epoch %d, iters %d' %
(epoch+epoch0, total_steps))
model.save('latest')
model.save(epoch+epoch0)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
if epoch > opt.niter:
model.update_learning_rate()