Skip to content

Latest commit

 

History

History
 
 

iris-classifier

Deploy models as a web APIs

WARNING: you are on the master branch, please refer to the examples on the branch that matches your cortex version

This example shows how to deploy a classifier trained on the famous iris data set using scikit-learn.


Train your model

  1. Create a Python file trainer.py.
  2. Use scikit-learn's LogisticRegression to train your model.
  3. Add code to pickle your model (you can use other serialization libraries such as joblib).
  4. Replace the bucket name "cortex-examples" with your bucket and upload it to S3 (boto3 will need access to valid AWS credentials).
import boto3
import pickle
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# Train the model

iris = load_iris()
data, labels = iris.data, iris.target
training_data, test_data, training_labels, test_labels = train_test_split(data, labels)

model = LogisticRegression(solver="lbfgs", multi_class="multinomial")
model.fit(training_data, training_labels)
accuracy = model.score(test_data, test_labels)
print("accuracy: {:.2f}".format(accuracy))

# Upload the model

pickle.dump(model, open("model.pkl", "wb"))
s3 = boto3.client("s3")
s3.upload_file("model.pkl", "cortex-examples", "sklearn/iris-classifier/model.pkl")

Run the script locally:

# Install scikit-learn and boto3
$ pip3 install sklearn boto3

# Run the script
$ python3 trainer.py

Implement your predictor

  1. Create another Python file predictor.py.
  2. Define a Predictor class with a constructor that loads and initializes your pickled model.
  3. Add a predict function that will accept a payload and return a prediction from your model.
# predictor.py

import os
import boto3
from botocore import UNSIGNED
from botocore.client import Config
import pickle

labels = ["setosa", "versicolor", "virginica"]


class PythonPredictor:
    def __init__(self, config):
        if os.environ.get("AWS_ACCESS_KEY_ID"):
            s3 = boto3.client("s3")  # client will use your credentials if available
        else:
            s3 = boto3.client("s3", config=Config(signature_version=UNSIGNED))  # anonymous client

        s3.download_file(config["bucket"], config["key"], "/tmp/model.pkl")
        self.model = pickle.load(open("/tmp/model.pkl", "rb"))

    def predict(self, payload):
        measurements = [
            payload["sepal_length"],
            payload["sepal_width"],
            payload["petal_length"],
            payload["petal_width"],
        ]

        label_id = self.model.predict([measurements])[0]
        return labels[label_id]

Here are the complete Predictor docs.


Specify your Python dependencies

Create a requirements.txt file to specify the dependencies needed by predictor.py. Cortex will automatically install them into your runtime once you deploy:

# requirements.txt

boto3

You can skip dependencies that are pre-installed to speed up the deployment process. Note that pickle is part of the Python standard library so it doesn't need to be included.


Configure your API

Create a cortex.yaml file and add the configuration below and replace cortex-examples with your S3 bucket. An api provides a runtime for inference and makes your predictor.py implementation available as a web service that can serve real-time predictions:

# cortex.yaml

- name: iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl

Here are the complete API configuration docs.


Deploy your model locally

cortex deploy takes your model along with the configuration from cortex.yaml and creates a web API:

$ cortex deploy

creating iris-classifier

Monitor the status of your API using cortex get:

$ cortex get iris-classifier --watch

status   up-to-date   requested   last update   avg request   2XX
live     1            1           1m            -             -

endpoint: http://localhost:8888

The output above indicates that one replica of your API was requested and is available to serve predictions. Cortex will automatically launch more replicas if the load increases and spin down replicas if there is unused capacity.

You can also stream logs from your API:

$ cortex logs iris-classifier

You can use curl to test your API:

$ curl http://localhost:8888 \
    -X POST -H "Content-Type: application/json" \
    -d '{"sepal_length": 5.2, "sepal_width": 3.6, "petal_length": 1.4, "petal_width": 0.3}'

"setosa"

Deploy your model to AWS

Cortex can automatically provision infrastructure on your AWS account and deploy your models as production-ready web services:

$ cortex cluster up

This creates a Cortex cluster in your AWS account, and will take approximately 15 minutes. Additional information about your cluster is shown on the command line.

After your cluster is created, you can deploy your model to your cluster by using the same code and configuration as before:

$ cortex deploy --env aws

creating iris-classifier

You can then get your API's endpoint (along with other useful information about your API) using the cortex get command:

$ cortex get iris-classifier --env aws

...
endpoint: http://***.amazonaws.com/iris-classifier
...

Then, to make requests to your prediction API on AWS:

$ curl http://***.amazonaws.com/iris-classifier \
    -X POST -H "Content-Type: application/json" \
    -d '{"sepal_length": 5.2, "sepal_width": 3.6, "petal_length": 1.4, "petal_width": 0.3}'

"setosa"

Configure prediction monitoring

Add monitoring to your cortex.yaml and specify that this is a classification model:

# cortex.yaml

- name: iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl
  monitoring:
    model_type: classification

Run cortex deploy again to perform a rolling update to your API with the new configuration:

$ cortex deploy --env aws

updating iris-classifier

After making more predictions, your cortex get command will show information about your API's past predictions:

$ cortex get --env aws iris-classifier --watch

status   up-to-date   requested   last update   avg request   2XX
live     1            1           1m            1.1 ms        14

class        count
setosa       8
versicolor   2
virginica    4

Configure compute resources

This model is fairly small but larger models may require more compute resources. You can configure this in your cortex.yaml:

# cortex.yaml

- name: iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl
  monitoring:
    model_type: classification
  compute:
    cpu: 0.2
    mem: 100M

You could also configure GPU compute here if your cluster supports it. Adding compute resources may help reduce your inference latency. Run cortex deploy again to update your API with this configuration:

$ cortex deploy --env aws

updating iris-classifier

Run cortex get again:

$ cortex get --env aws iris-classifier --watch

status   up-to-date   requested   last update   avg request   2XX
live     1            1           1m            1.1 ms        14

class        count
setosa       8
versicolor   2
virginica    4

Add another API

If you trained another model and want to A/B test it with your previous model, simply add another api to your configuration and specify the new model:

# cortex.yaml

- name: iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl
  monitoring:
    model_type: classification
  compute:
    cpu: 0.2
    mem: 100M

- name: another-iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/another-model.pkl
  monitoring:
    model_type: classification
  compute:
    cpu: 0.2
    mem: 100M

Run cortex deploy to create the new API:

$ cortex deploy --env aws

iris-classifier is up to date
creating another-iris-classifier

cortex deploy is declarative so the iris-classifier API is unchanged while another-iris-classifier is created:

$ cortex get --env aws --watch

api                       status   up-to-date   requested   last update
iris-classifier           live     1            1           5m
another-iris-classifier   live     1            1           1m

Add a batch API

First, implement batch-predictor.py with a predict function that can process an array of payloads:

# batch-predictor.py

import os
import boto3
from botocore import UNSIGNED
from botocore.client import Config
import pickle

labels = ["setosa", "versicolor", "virginica"]


class PythonPredictor:
    def __init__(self, config):
        if os.environ.get("AWS_ACCESS_KEY_ID"):
            s3 = boto3.client("s3")  # client will use your credentials if available
        else:
            s3 = boto3.client("s3", config=Config(signature_version=UNSIGNED))  # anonymous client

        s3.download_file(config["bucket"], config["key"], "/tmp/model.pkl")
        self.model = pickle.load(open("/tmp/model.pkl", "rb"))

    def predict(self, payload):
        measurements = [
            [
                sample["sepal_length"],
                sample["sepal_width"],
                sample["petal_length"],
                sample["petal_width"],
            ]
            for sample in payload
        ]

        label_ids = self.model.predict(measurements)
        return [labels[label_id] for label_id in label_ids]

Next, add the api to cortex.yaml:

# cortex.yaml

- name: iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl
  monitoring:
    model_type: classification
  compute:
    cpu: 0.2
    mem: 100M

- name: another-iris-classifier
  predictor:
    type: python
    path: predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/another-model.pkl
  monitoring:
    model_type: classification
  compute:
    cpu: 0.2
    mem: 100M

- name: batch-iris-classifier
  predictor:
    type: python
    path: batch-predictor.py
    config:
      bucket: cortex-examples
      key: sklearn/iris-classifier/model.pkl
  compute:
    cpu: 0.2
    mem: 100M

Run cortex deploy to create your batch API:

$ cortex deploy --env aws

updating iris-classifier
updating another-iris-classifier
creating batch-iris-classifier

Since a new file was added to the directory, and all files in the directory containing cortex.yaml are made available in your APIs, the previous two APIs were updated in addition to the the batch classifier being created.

cortex get should show all 3 APIs now:

$ cortex get --env aws --watch

api                       status   up-to-date   requested   last update
iris-classifier           live     1            1           1m
another-iris-classifier   live     1            1           1m
batch-iris-classifier     live     1            1           1m

Try a batch prediction

$ curl http://***.amazonaws.com/batch-iris-classifier \
    -X POST -H "Content-Type: application/json" \
    -d '[
          {
            "sepal_length": 5.2,
            "sepal_width": 3.6,
            "petal_length": 1.5,
            "petal_width": 0.3
          },
          {
            "sepal_length": 7.1,
            "sepal_width": 3.3,
            "petal_length": 4.8,
            "petal_width": 1.5
          },
          {
            "sepal_length": 6.4,
            "sepal_width": 3.4,
            "petal_length": 6.1,
            "petal_width": 2.6
          }
        ]'

["setosa","versicolor","virginica"]

Cleanup

Run cortex delete to delete each API:

$ cortex delete --env local iris-classifier

deleting iris-classifier

$ cortex delete --env aws iris-classifier

deleting iris-classifier

$ cortex delete --env aws another-iris-classifier

deleting another-iris-classifier

$ cortex delete --env aws batch-iris-classifier

deleting batch-iris-classifier

Running cortex delete will free up cluster resources and allow Cortex to scale down to the minimum number of instances you specified during cluster installation. It will not spin down your cluster.