-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
241 lines (196 loc) · 8.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import tensorflow as tf
from tensorflow import keras
class TransformerEncoderBlock(keras.layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.layers.Dense(embed_dim, activation="relu")
self.layernorm_1 = keras.layers.LayerNormalization()
def call(self, inputs, training, mask=None):
inputs = self.dense_proj(inputs)
attention_output = self.attention(
query=inputs, value=inputs, key=inputs, attention_mask=None
)
proj_input = self.layernorm_1(inputs + attention_output)
return proj_input
class PositionalEmbedding(keras.layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = keras.layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = keras.layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
class TransformerDecoderBlock(keras.layers.Layer):
def __init__(self, embed_dim, ff_dim, num_heads, seq_length, vocab_size, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.ff_dim = ff_dim
self.num_heads = num_heads
self.attention_1 = keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.attention_2 = keras.layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[
keras.layers.Dense(ff_dim, activation="relu"),
keras.layers.Dense(embed_dim),
]
)
self.layernorm_1 = keras.layers.LayerNormalization()
self.layernorm_2 = keras.layers.LayerNormalization()
self.layernorm_3 = keras.layers.LayerNormalization()
self.embedding = PositionalEmbedding(
embed_dim=embed_dim, sequence_length=seq_length, vocab_size=vocab_size
)
self.out = keras.layers.Dense(vocab_size)
self.dropout_1 = keras.layers.Dropout(0.1)
self.dropout_2 = keras.layers.Dropout(0.5)
self.supports_masking = True
def call(self, inputs, encoder_outputs, training, mask=None):
inputs = self.embedding(inputs)
causal_mask = self.get_causal_attention_mask(inputs)
inputs = self.dropout_1(inputs, training=training)
if mask is not None:
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
attention_output_1 = self.attention_1(
query=inputs, value=inputs, key=inputs, attention_mask=combined_mask
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
proj_output = self.dense_proj(out_2)
proj_out = self.layernorm_3(out_2 + proj_output)
proj_out = self.dropout_2(proj_out, training=training)
preds = self.out(proj_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0,
)
return tf.tile(mask, mult)
class ImageCaptionModel(keras.Model):
def __init__(
self, cnn_model, encoder, decoder,
):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.loss_tracker = keras.metrics.Mean(name="loss")
self.acc_tracker = keras.metrics.Mean(name="accuracy")
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def train_step(self, batch_data):
batch_img, batch_seq = batch_data
batch_loss = 0
batch_acc = 0
# 1. Get image embeddings
img_embed = self.cnn_model(batch_img)
# 2. Pass each of the five captions one by one to the decoder
# along with the encoder outputs and compute the loss as well as accuracy
# for each caption.
with tf.GradientTape() as tape:
# 3. Pass image embeddings to encoder
encoder_out = self.encoder(img_embed, training=True)
batch_seq_inp = batch_seq[:, 0, :-1]
batch_seq_true = batch_seq[:, 0, 1:]
# 4. Compute the mask for the input sequence
mask = tf.math.not_equal(batch_seq_inp, 0)
# 5. Pass the encoder outputs, sequence inputs along with
# mask to the decoder
batch_seq_pred = self.decoder(
batch_seq_inp, encoder_out, training=True, mask=mask
)
# 6. Calculate loss and accuracy
caption_loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
caption_acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
# 7. Update the batch loss and batch accuracy
batch_loss += caption_loss
batch_acc += caption_acc
# 8. Get the list of all the trainable weights
train_vars = self.encoder.trainable_variables + self.decoder.trainable_variables
# 9. Get the gradients
grads = tape.gradient(caption_loss, train_vars)
# 10. Update the trainable weights
self.optimizer.apply_gradients(zip(grads, train_vars))
loss = batch_loss
acc = batch_acc
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch_data):
batch_img, batch_seq = batch_data
batch_loss = 0
batch_acc = 0
# 1. Get image embeddings
img_embed = self.cnn_model(batch_img)
# 2. Pass image embeddings to encoder
encoder_out = self.encoder(img_embed, training=False)
batch_seq_inp = batch_seq[:, 0, :-1]
batch_seq_true = batch_seq[:, 0, 1:]
# 4. Compute the mask for the input sequence
mask = tf.math.not_equal(batch_seq_inp, 0)
# 5. Pass the encoder outputs, sequence inputs along with
# mask to the decoder
batch_seq_pred = self.decoder(
batch_seq_inp, encoder_out, training=False, mask=mask
)
# 6. Calculate loss and accuracy
caption_loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
caption_acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
# 7. Update the batch loss and batch accuracy
batch_loss += caption_loss
batch_acc += caption_acc
loss = batch_loss
acc = batch_acc
self.loss_tracker.update_state(loss)
self.acc_tracker.update_state(acc)
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
# We need to list our metrics here so the `reset_states()` can be
# called automatically.
return [self.loss_tracker, self.acc_tracker]