forked from digicert/smbr-cert-factory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
key.py
285 lines (198 loc) · 9.22 KB
/
key.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import binascii
from abc import ABC
from typing import NamedTuple, Sequence, Tuple, Optional
from cryptography.exceptions import InvalidSignature
from pyasn1.codec.der.decoder import decode
from pyasn1.codec.der.encoder import encode
from pyasn1.type import univ
from pyasn1_alt_modules import rfc5280, rfc5480, rfc4055
from cryptography.hazmat.primitives.asymmetric import ec, rsa
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.primitives.asymmetric import padding
class KeyPair(NamedTuple):
private_key: 'PrivateKey'
public_key: 'PublicKey'
_KEY_OID_TO_CONSTRUCTOR = {}
def decode_spki(spki: rfc5280.SubjectPublicKeyInfo) -> 'PublicKey':
alg_oid = spki['algorithm']['algorithm']
spki_cons = _KEY_OID_TO_CONSTRUCTOR.get(alg_oid)
if spki_cons is None:
raise ValueError(f'Unknown public key algorithm "{str(alg_oid)}"')
parameters = spki['algorithm']['parameters'] if 'parameters' in spki['algorithm'] else None
return spki_cons(alg_oid, parameters, spki['subjectPublicKey'].asOctets())
def decode_spki_octets(octets) -> 'PublicKey':
spki, _ = decode(octets, asn1Spec=rfc5280.SubjectPublicKeyInfo())
return decode_spki(spki)
def _create_algorithm_identifier(alg_oid, parameters_asn1=None):
alg_id = rfc5280.AlgorithmIdentifier()
alg_id['algorithm'] = alg_oid
if parameters_asn1 is not None:
encoded = encode(parameters_asn1)
alg_id['parameters'] = encoded
return alg_id
class PrivateKey(ABC):
@property
def raw_octets(self) -> bytes:
raise NotImplementedError()
@property
def encoded(self) -> bytes:
return self.raw_octets
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def sign(self, message: bytes) -> bytes:
raise NotImplementedError()
class PublicKey(ABC):
@property
def key_algorithm(self) -> rfc5280.AlgorithmIdentifier:
raise NotImplementedError()
@property
def signature_algorithm(self) -> rfc5280.AlgorithmIdentifier:
raise NotImplementedError()
@property
def raw_octets(self) -> bytes:
raise NotImplementedError()
@property
def encoded(self) -> bytes:
return self.raw_octets
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def verify(self, message: bytes, signature: bytes, signature_algorithm: rfc5280.AlgorithmIdentifier) -> bool:
raise NotImplementedError()
@property
def to_spki(self) -> rfc5280.SubjectPublicKeyInfo():
spki = rfc5280.SubjectPublicKeyInfo()
spki['algorithm'] = self.key_algorithm
spki['subjectPublicKey'] = univ.BitString(hexValue=binascii.b2a_hex(self.encoded))
return spki
_OID_TO_CURVE = {
rfc5480.secp256r1: ec.SECP256R1,
rfc5480.secp384r1: ec.SECP384R1,
rfc5480.secp521r1: ec.SECP521R1,
}
_CURVE_TO_OID = {v: k for k, v in _OID_TO_CURVE.items()}
_CURVE_TO_HASH_CLS = {
ec.SECP256R1: hashes.SHA256,
ec.SECP384R1: hashes.SHA384,
ec.SECP521R1: hashes.SHA512,
}
_CURVE_TO_SIG_ALG = {
ec.SECP256R1: rfc5480.ecdsa_with_SHA256,
ec.SECP384R1: rfc5480.ecdsa_with_SHA384,
ec.SECP521R1: rfc5480.ecdsa_with_SHA512,
}
class EcPublicKey(PublicKey):
def __init__(self, alg_oid, parameters, octets: bytes):
if alg_oid != rfc5480.id_ecPublicKey:
raise ValueError(f'Invalid key algorithm: "{str(alg_oid)}"')
self._octets = octets
self._curve_oid, _ = decode(parameters, asn1Spec=univ.ObjectIdentifier())
curve_cls = _OID_TO_CURVE[self._curve_oid]
self._backend_instance = ec.EllipticCurvePublicKey.from_encoded_point(curve_cls(), octets)
@property
def key_algorithm(self) -> rfc5280.AlgorithmIdentifier:
return _create_algorithm_identifier(rfc5480.id_ecPublicKey, self._curve_oid)
@property
def signature_algorithm(self) -> rfc5280.AlgorithmIdentifier:
return _create_algorithm_identifier(_CURVE_TO_SIG_ALG[type(self._backend_instance.curve)])
@property
def raw_octets(self) -> bytes:
return self._octets
@property
def encoded(self) -> bytes:
return self._backend_instance.public_bytes(
encoding=serialization.Encoding.X962, format=serialization.PublicFormat.UncompressedPoint)
def verify(self, message: bytes, signature: bytes, signature_algorithm: rfc5280.AlgorithmIdentifier) -> bool:
if encode(signature_algorithm) != encode(self.signature_algorithm):
raise ValueError('ECDSA key and signature algorithm mismatch')
h_cls = _CURVE_TO_HASH_CLS[type(self._backend_instance.curve)]
try:
self._backend_instance.verify(signature, message, ec.ECDSA(h_cls()))
return True
except InvalidSignature:
return False
_KEY_OID_TO_CONSTRUCTOR[rfc5480.id_ecPublicKey] = EcPublicKey
class EcPrivateKey(PrivateKey):
def __init__(self, cryptography_obj: ec.EllipticCurvePrivateKey):
self._backend_instance = cryptography_obj
@property
def raw_octets(self) -> bytes:
raise NotImplementedError()
@property
def to_pem(self) -> bytes:
return self._backend_instance.private_bytes(serialization.Encoding.PEM,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.NoEncryption())
def sign(self, message: bytes) -> bytes:
h_cls = _CURVE_TO_HASH_CLS[type(self._backend_instance.curve)]
return self._backend_instance.sign(message, ec.ECDSA(h_cls()))
@staticmethod
def load(crypto_private_key: ec.EllipticCurvePrivateKey) -> KeyPair:
crypto_public_key = crypto_private_key.public_key()
crypto_public_key_octets = crypto_public_key.public_bytes(
encoding=serialization.Encoding.X962, format=serialization.PublicFormat.UncompressedPoint)
return KeyPair(
EcPrivateKey(crypto_private_key),
EcPublicKey(rfc5480.id_ecPublicKey, encode(
_CURVE_TO_OID[type(crypto_public_key.curve)]), crypto_public_key_octets))
@staticmethod
def generate(curve: ec.EllipticCurve) -> KeyPair:
crypto_private_key = ec.generate_private_key(curve)
return EcPrivateKey.load(crypto_private_key)
class RsaPkcs15PublicKey(PublicKey):
def __init__(self, alg_oid, octets: bytes):
if alg_oid != rfc4055.rsaEncryption:
raise ValueError(f'Invalid key algorithm: "{str(alg_oid)}"')
self._octets = octets
spki = self.to_spki
spki_octets = encode(spki)
self._backend_instance = serialization.load_der_public_key(spki_octets)
@property
def key_algorithm(self) -> rfc5280.AlgorithmIdentifier:
return _create_algorithm_identifier(rfc4055.rsaEncryption, univ.Null(''))
@property
def signature_algorithm(self) -> rfc5280.AlgorithmIdentifier:
return _create_algorithm_identifier(rfc4055.sha256WithRSAEncryption, univ.Null(''))
@property
def raw_octets(self) -> bytes:
return self._octets
def verify(self, message: bytes, signature: bytes, signature_algorithm: rfc5280.AlgorithmIdentifier) -> bool:
if encode(signature_algorithm) != encode(self.signature_algorithm):
raise ValueError('RSA key and signature algorithm mismatch')
try:
self._backend_instance.verify(signature, message, padding.PKCS1v15(), hashes.SHA256())
return True
except InvalidSignature:
return False
_KEY_OID_TO_CONSTRUCTOR[rfc4055.rsaEncryption] = RsaPkcs15PublicKey
class RsaPkcs15PrivateKey(PrivateKey):
def __init__(self, cryptography_obj: rsa.RSAPrivateKey):
self._backend_instance = cryptography_obj
@property
def raw_octets(self) -> bytes:
return self._backend_instance.private_bytes(serialization.Encoding.DER, serialization.PrivateFormat.Raw,
serialization.NoEncryption())
@property
def to_pem(self) -> bytes:
return self._backend_instance.private_bytes(serialization.Encoding.PEM,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.NoEncryption())
def sign(self, message: bytes) -> bytes:
return self._backend_instance.sign(message, padding.PKCS1v15(), hashes.SHA256())
@staticmethod
def load(crypto_private_key: rsa.RSAPrivateKey) -> KeyPair:
crypto_public_key = crypto_private_key.public_key()
crypto_public_key_octets = crypto_public_key.public_bytes(encoding=serialization.Encoding.DER,
format=serialization.PublicFormat.PKCS1
)
return KeyPair(
RsaPkcs15PrivateKey(crypto_private_key),
RsaPkcs15PublicKey(rfc4055.rsaEncryption, crypto_public_key_octets)
)
@staticmethod
def generate(modulus_length: int, exponent: int = 65537) -> KeyPair:
crypto_private_key = rsa.generate_private_key(exponent, modulus_length)
return RsaPkcs15PrivateKey.load(crypto_private_key)