forked from MatthieuCourbariaux/BinaryConnect
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mnist.py
224 lines (173 loc) · 7.47 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2015 Matthieu Courbariaux
# This file is part of BinaryConnect.
# BinaryConnect is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# BinaryConnect is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with BinaryConnect. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import sys
import os
import time
import numpy as np
np.random.seed(1234) # for reproducibility
# specifying the gpu to use
# import theano.sandbox.cuda
# theano.sandbox.cuda.use('gpu1')
import theano
import theano.tensor as T
import lasagne
import cPickle as pickle
import gzip
import batch_norm
import binary_connect
from pylearn2.datasets.mnist import MNIST
from pylearn2.utils import serial
from collections import OrderedDict
if __name__ == "__main__":
# BN parameters
batch_size = 100
print("batch_size = "+str(batch_size))
# alpha is the exponential moving average factor
alpha = .15
print("alpha = "+str(alpha))
epsilon = 1e-4
print("epsilon = "+str(epsilon))
# MLP parameters
num_units = 2048
print("num_units = "+str(num_units))
n_hidden_layers = 3
print("n_hidden_layers = "+str(n_hidden_layers))
# Training parameters
num_epochs = 250
print("num_epochs = "+str(num_epochs))
# Dropout parameters
dropout_in = 0. # 0. means no dropout
print("dropout_in = "+str(dropout_in))
dropout_hidden = 0.
print("dropout_hidden = "+str(dropout_hidden))
# BinaryConnect
binary = True
print("binary = "+str(binary))
stochastic = True
print("stochastic = "+str(stochastic))
# (-H,+H) are the two binary values
# H = "Glorot"
H = 1.
print("H = "+str(H))
# W_LR_scale = 1.
W_LR_scale = "Glorot" # "Glorot" means we are using the coefficients from Glorot's paper
print("W_LR_scale = "+str(W_LR_scale))
# Decaying LR
LR_start = .001
print("LR_start = "+str(LR_start))
LR_fin = 0.000003
print("LR_fin = "+str(LR_fin))
LR_decay = (LR_fin/LR_start)**(1./num_epochs)
print("LR_decay = "+str(LR_decay))
# BTW, LR decay might good for the BN moving average...
print('Loading MNIST dataset...')
train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = True)
valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = True)
test_set = MNIST(which_set= 'test', center = True)
# bc01 format
# print train_set.X.shape
train_set.X = train_set.X.reshape(-1, 1, 28, 28)
valid_set.X = valid_set.X.reshape(-1, 1, 28, 28)
test_set.X = test_set.X.reshape(-1, 1, 28, 28)
# flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)
# Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])
# for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.
print('Building the MLP...')
# Prepare Theano variables for inputs and targets
input = T.tensor4('inputs')
target = T.matrix('targets')
LR = T.scalar('LR', dtype=theano.config.floatX)
mlp = lasagne.layers.InputLayer(
shape=(None, 1, 28, 28),
input_var=input)
mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_in)
for k in range(n_hidden_layers):
mlp = binary_connect.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_units)
mlp = batch_norm.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_hidden)
mlp = binary_connect.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
nonlinearity=lasagne.nonlinearities.identity,
num_units=10)
mlp = batch_norm.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.identity)
train_output = lasagne.layers.get_output(mlp, deterministic=False)
# squared hinge loss
loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
if binary:
# W updates
W = lasagne.layers.get_all_params(mlp, binary=True)
W_grads = binary_connect.compute_grads(loss,mlp)
updates = lasagne.updates.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
updates = binary_connect.clipping_scaling(updates,mlp)
# other parameters updates
params = lasagne.layers.get_all_params(mlp, trainable=True, binary=False)
updates = OrderedDict(updates.items() + lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())
else:
params = lasagne.layers.get_all_params(mlp, trainable=True)
updates = lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR)
test_output = lasagne.layers.get_output(mlp, deterministic=True)
test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
# Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
# and returning the corresponding training loss:
train_fn = theano.function([input, target, LR], loss, updates=updates)
# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input, target], [test_loss, test_err])
print('Training...')
binary_connect.train(
train_fn,val_fn,
batch_size,
LR_start,LR_decay,
num_epochs,
train_set.X,train_set.y,
valid_set.X,valid_set.y,
test_set.X,test_set.y)
# print("display histogram")
# W = lasagne.layers.get_all_layers(mlp)[2].W.get_value()
# print(W.shape)
# histogram = np.histogram(W,bins=1000,range=(-1.1,1.1))
# np.savetxt(str(dropout_hidden)+str(binary)+str(stochastic)+str(H)+"_hist0.csv", histogram[0], delimiter=",")
# np.savetxt(str(dropout_hidden)+str(binary)+str(stochastic)+str(H)+"_hist1.csv", histogram[1], delimiter=",")
# Optionally, you could now dump the network weights to a file like this:
# np.savez('model.npz', lasagne.layers.get_all_param_values(network))