-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
183 lines (150 loc) · 7.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import numpy as np
import pandas as pd
import torch
import torchvision
import torchvision.transforms as transforms
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from torch.utils.data import DataLoader
import model
import pyramidnet
import utils
def get_CIFAR10_data(batch_size, num_workers):
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
data = torch.cat([d[0] for d in DataLoader(train_set)])
# data augmentation
train_transform = transforms.Compose([
torchvision.transforms.RandomCrop(size=(32, 32), padding=4),
torchvision.transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(data.mean(dim=[0, 2, 3]), data.std(dim=[0, 2, 3])),
utils.Cutout()
])
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(data.mean(dim=[0, 2, 3]), data.std(dim=[0, 2, 3]))
])
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
val_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=val_transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=num_workers)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
return train_set, val_set, train_loader, val_loader, classes
def model_train():
for epoch in range(args.epochs):
model.train()
log.train(len_dataset=len(train_loader))
# train loss
for data in train_loader:
batch, labels = data
batch, labels = batch.to(device), labels.to(device)
# the SAM Optimizer, which needs two forward-backward passes to estimate the "sharpness-aware" gradient
# step 1
utils.enable_running_stats(model)
outputs = model(batch)
loss = utils.smooth_crossentropy(outputs, labels, smoothing=args.label_smoothing)
loss.mean().backward()
optimizer.first_step(zero_grad=True)
# step 2
utils.disable_running_stats(model)
utils.smooth_crossentropy(model(batch), labels, smoothing=args.label_smoothing).mean().backward()
optimizer.second_step(zero_grad=True)
with torch.no_grad():
correct = torch.argmax(outputs.data, 1) == labels
log(model, loss.cpu(), correct.cpu(), scheduler.lr())
scheduler(epoch)
model.eval()
log.eval(len_dataset=len(val_loader))
# val loss
with torch.no_grad():
for data in val_loader:
batch, labels = data
batch, labels = batch.to(device), labels.to(device)
outputs = model(batch)
loss = utils.smooth_crossentropy(outputs, labels)
correct = torch.argmax(outputs, 1) == labels
log(model, loss.cpu(), correct.cpu())
log.flush()
def complementary_show(show: bool):
if show:
# create confusion matrix
confusion_mat = confusion_matrix(label_vec, pred_vec)
confusion_df = pd.DataFrame(confusion_mat, index=classes, columns=classes)
print("Confusion Matrix")
print(confusion_df)
# create a report to show the f1-score, precision, recall
report = pd.DataFrame.from_dict(classification_report(pred_vec, label_vec, output_dict=True)).T
report['Label'] = [classes[int(x)] if x.isdigit() else " " for x in report.index]
report = report[['Label', 'f1-score', 'precision', 'recall', 'support']]
print(report)
if __name__ == '__main__':
# hyperparameters
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=128, type=int)
parser.add_argument("--depth", default=28, type=int)
parser.add_argument("--dropout", default=0, type=float)
parser.add_argument("--epochs", default=300, type=int)
parser.add_argument("--label_smoothing", default=0.1, type=float, help="Use 0.1 for label smoothing.")
parser.add_argument("--learning_rate", default=0.1, type=float)
parser.add_argument("--momentum", default=0.9, type=float, help="SGD Momentum.")
parser.add_argument("--rho", default=2.0, type=int, help="Rho parameter for SAM.")
parser.add_argument("--weight_decay", default=0.0005, type=float)
parser.add_argument("--width_factor", default=10, type=int, help="How many times wider compared to normal ResNet.")
parser.add_argument("--num_workers", default=2, type=int)
parser.add_argument("--comp_show", default=True, type=bool)
args = parser.parse_args()
# cudnn settings
utils.initialize(seed=42)
# device and model
device = torch.device("cuda")
model = model.WideResNet(args.depth, args.width_factor, dropout=args.dropout, in_channels=3, labels=10).to(device)
# model = model.PyramidNet(dataset='cifar10', depth=110, alpha=64, num_classes=10, bottleneck=False)
# model = pyramidnet.PyramidNet(dataset='cifar10', depth=272, alpha=48, num_classes=10, bottleneck=True).cuda()
# get dataset
train_set, val_set, train_loader, val_loader, classes = get_CIFAR10_data(args.batch_size, args.num_workers)
# log
log = utils.Log(log_each=10)
# record parameters
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Number of trainable parameters:", num_params)
# optimizer and scheduler
optimizer = utils.SAM(model.parameters(), torch.optim.SGD, rho=args.rho, adaptive=True,
lr=args.learning_rate,
momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = utils.StepLR(optimizer, args.learning_rate, args.epochs)
# train model
model_train()
# test the Trained Network
device = torch.device("cuda")
test_transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pred_vec = []
label_vec = []
correct = 0
test_loss = 0.0
model.to(device)
test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False, num_workers=2)
with torch.no_grad():
for data in test_loader:
batch, labels = data
batch, labels = batch.to(device), labels.to(device)
outputs = model(batch)
test_loss = utils.smooth_crossentropy(outputs, labels)
_, predicted = torch.max(outputs, 1)
correct += (predicted == labels).sum().item()
pred_vec.extend(predicted.cpu().numpy())
label_vec.extend(labels.cpu().numpy())
pred_vec = np.array(pred_vec)
label_vec = np.array(label_vec)
test_loss = np.array(test_loss.cpu())
print("Test Loss: {:.2f}".format(test_loss[-1]))
print('Test Accuracy on the 10000 test images: %.2f %%' % (100 * correct / len(test_set)))
# best 96.93 % wrn epoch120
# best 97.27 % wrn epoch200
# best 96.26% pyramid epoch200
# compute the Accuracy, F1-Score, Precision, Recall, Support
complementary_show(args.comp_show)