-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdetect.py
158 lines (130 loc) · 4.81 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
""""""
import sys
import logging
import os
import time
import cv2
def image_show(image, title=None):
""""""
if title is None:
title = str(image.shape[1])+'x'+str(image.shape[0])
cv2.imshow(title, image)
while True:
key = cv2.waitKey()
if key == 27 or key == ord('q'): # Press esc or q to close.
break
cv2.destroyAllWindows()
def image_grayscale(image, equalize=False):
""""""
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if equalize:
grayscale = cv2.equalizeHist(grayscale)
return grayscale
def detect_eyes(image):
""""""
return cv2.CascadeClassifier('haarcascades/haarcascade_eye.xml').detectMultiScale(image)
def detect_frontalface(image, cascade='alt'): # default | alt | alt2 | alt_tree
""""""
if image.size < 1:
return []
return cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_'+cascade+'.xml').detectMultiScale(image)
#return cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_'+cascade+'.xml').detectMultiScale(
# image,
# scaleFactor=1.07, # (1,2] lower means missed faces less likely, non-faces more likely (lower takes longer too)
# minNeighbors=5 # [3,6] lower means missed faces less likely, non-faces more likely
#)
def detect_people(image):
""""""
if image.size < 1:
return []
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
return hog.detectMultiScale(image)[0]
#return hog.detectMultiScale(
# image,
# winStride=(8, 8),
# padding=(32, 32),
# scale=1.05
#)[0]
#return [(rx, ry, rw, rh) for (rx, ry), (rw, rh) in list(cv2.cv.HOGDetectMultiScale(
# cv2.cv.fromarray(image),
# cv2.cv.CreateMemStorage(0),
# hit_threshold=0.5,
# group_threshold=2
#))]
#cascades = {
# 'fullbody': cv2.CascadeClassifier('haarcascades/haarcascade_fullbody.xml'),
# 'pedestrians': cv2.CascadeClassifier('hogcascades/hogcascade_pedestrians.xml')
#}
#return cascades['pedestrians'].detectMultiScale(image)
def census(filename, frontalface_cascade='alt'):
""""""
log = logging.getLogger(__name__)
log.debug(filename+' Loading...')
image = cv2.imread(filename)
log.debug(filename+' Converting to grayscale...')
gray = image_grayscale(image, True)
log.debug(filename+' Detecting people...')
people = detect_people(gray)
probabilities = [0, 0, 0, 0]
for (px, py, pw, ph) in people:
faces = len(detect_frontalface(gray[py:py+ph, px:px+pw], frontalface_cascade))
probabilities[min(faces, 3)] += 1
color = { # BGR
1: (0, 255, 0),
2: (255, 0, 255)
}.get(faces, (255, 0, 0))
if color != (255, 0, 0):
cv2.rectangle(image, (px, py), (px+pw, py+ph), color, 2)
log.info(
filename+' '+str(len(people))+' people (' +
str(probabilities[1])+' confirmed, ' +
str(probabilities[0]+probabilities[2])+' probable, ' +
str(probabilities[3])+' potential)'
)
log.debug(filename+' Detecting faces...')
faces = detect_frontalface(gray, frontalface_cascade)
probabilities = [0, 0, 0, 0, 0]
for (fx, fy, fw, fh) in faces:
eyes = len(detect_eyes(gray[fy:fy+fh, fx:fx+fw]))
probabilities[min(eyes, 4)] += 1
color = { # BGR
1: (0, 255, 255),
2: (0, 255, 0),
3: (0, 255, 255)
}.get(eyes, (0, 0, 255))
center = ((fx+(fx+fw))/2, (fy+(fy+fh))/2)
radius = (((fx-center[0])**2)+((fy-center[1])**2))**(1.0/2)
cv2.circle(image, center, int(round(radius)), color, 2)
log.info(
filename+' '+str(len(faces))+' faces (' +
str(probabilities[2])+' confirmed, ' +
str(probabilities[1]+probabilities[3])+' probable, ' +
str(probabilities[0]+probabilities[4])+' potential)'
)
return image
if __name__ == '__main__':
log_file = 'detection.log'
logging.basicConfig(
filename=log_file,
level=logging.INFO,
format='%(asctime)s.%(msecs)03d %(name)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
face_cascade = 'alt'
folder = 'detected/'+str(int(time.time()*1000))+'.'+face_cascade
if not os.path.exists(folder):
os.makedirs(folder)
arg_max = 0
for arg in sys.argv[1:]:
arg_len = len(arg)
if arg_len > arg_max:
arg_max = arg_len
for arg in sys.argv[1:]:
print('{filename:<'+str(arg_max)+'}').format(filename=arg),
start = time.time()
cv2.imwrite(os.path.join(folder, os.path.basename(arg)), census(arg, face_cascade))
end = time.time()
print '{runtime:>15.10f}s'.format(runtime=end-start)
os.rename(log_file, folder+'/'+log_file)