-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path04-curve-fitting.jl
3376 lines (2762 loc) · 118 KB
/
04-curve-fitting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.20.4
using Markdown
using InteractiveUtils
# ╔═╡ 23daae04-ab90-4ce9-8058-864cab13972d
using Random;Random.seed!(1234)
# ╔═╡ 8c821f17-da8c-4288-a960-f042b3b8b973
using Plots
# ╔═╡ 80c6de8f-6d91-49dc-9941-7ff2451231b6
using Optimization
# ╔═╡ 5fff1493-e74f-4df6-9b21-38c86562b913
using OptimizationOptimJL
# ╔═╡ 17cb3c66-4e77-4308-96e2-b83d30e3204f
using ForwardDiff
# ╔═╡ 3e04f697-b12a-44aa-b7de-25295e1ea364
using Turing
# ╔═╡ f1b6fd4f-2f0e-4d7a-a5d8-7f88f0fd9f4c
using PairPlots
# ╔═╡ 0e5f8dfb-9890-448c-847e-a8cf9f63dc12
using CairoMakie: Makie
# ╔═╡ 0f6e13ab-575f-4011-ba0d-43dacc5edfb7
md"""
# Curve Fitting
This tutorial will demonstrate fitting data with a straight line (linear regression), an abitrary non-linear model, and finally a Bayesian model.
## Packages
* [`LinearAlgebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) we'll use this built-in Julia standard library to perform a linear regression
* [`Optimization`](http://optimization.sciml.ai/stable/): we'll use this package to display coordinates along the image and add the scalebar
* `OptimizationOptimJL`: the specific optimizer backend we will use. For your own problems, select the best backend from the Optimization.jl documentation page.
* [`Turing`](https://turing.ml/stable/): we'll use this package for Bayesian modelling.
* [`PairPlots`](https://github.com/sefffal/PairPlots.jl): we'll use this for creating a corner plot of the posterior from our Bayesian models.
In your own code, you most likely won't need all of these packages. Pick and choose the one that best fits your problem.
## Generating the data
We'll generate synthetic data for this problem. We'll make a weak parabola with some noise. For consistency, we'll seed the Julia random number generator so that we see the same noise each time the tutorial is run.
"""
# ╔═╡ 5dd3e860-590c-4c80-9b06-e3f499810835
md"""
By calling `seed!`, the pattern of random numbers generated by `rand` and `randn` will be the same each time.
Now we'll generate the data:
"""
# ╔═╡ a5680cc0-17b9-4205-ace8-19ec773e4502
x = 0:5:100 # Or equivalently: range(0, 100, step=5)
# ╔═╡ 922a86df-155a-4a5c-b4d5-c5d859883d39
y = (x ./ 20 .- 0.2).^2 .+ 2 .+ randn(length(x))
# ╔═╡ 8061efe2-f7f0-4ad3-bfa3-6e261e515af0
md"""
The `randn` function generates a random value normally distributed around `0` with a standard deviation of `1`. `rand` on the other hand creates uniformly distributed random values distributed between `0` and `1`.
Let's plot the data to see what it looks like:
"""
# ╔═╡ b9a6dbb2-2ed5-4d66-9906-956db1bb455d
scatter(x, y; xlabel="x", ylabel="y", label="data")
# ╔═╡ 3a70d376-acfa-4b40-b676-6776efd0a67a
md"""
## Linear regression
Before using any packages, let's perform a linear fit from scratch using some linear algebra.
The equation of a line can be written in matrix form as
```math
\quad
\begin{pmatrix}
N & \sum y_i \\
\sum y_i & \sum y_{i}^2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\end{pmatrix}=
\begin{pmatrix}
\sum y_i \\
\sum y_i x_i
\end{pmatrix}
```
where $c_1$ and $c_2$ are the intercept and slope.
Multiplying both sides by the inverse of the first matrix gives
```math
\quad
\begin{pmatrix}
c_1 \\
c_2 \\
\end{pmatrix}=
\begin{pmatrix}
N & \sum y_i \\
\sum y_i & \sum y_{i}^2
\end{pmatrix}^{-1}
\begin{pmatrix}
\sum y_i \\
\sum y_i x_i
\end{pmatrix}
```
We can write the right-hand side matrix and vector (let's call them `A` and `b`) in Julia notation like so:
"""
# ╔═╡ 7a1c1019-9d0e-442b-bb76-e5e8494a9b4d
A = [
length(x) sum(x)
sum(x) sum(x.^2)
]
# ╔═╡ 29fcd76d-4e1b-42c9-9282-2186b5ba42e8
b = [
sum(y)
sum(y .* x)
]
# ╔═╡ 6f70d9a9-d3c6-43e3-92be-3bc01e8ec7ba
md"""
We can now perform the linear fit by solving the system of equations with the `\` operator:
"""
# ╔═╡ caeb0ecf-0d5c-4913-972b-e5fe38f588c2
c = A\b
# ╔═╡ fcdeb663-5215-4dc0-a265-b90a5ce62f41
md"""
Let's make a helper function `linfunc` that takes an x value, a slope, and an intercept and calculates the corresponding y value:
"""
# ╔═╡ 4b32d879-e3e0-40ad-a777-d81b3beb91df
linfunc(x; slope, intercept) = slope*x + intercept
# ╔═╡ 52e4201f-b23d-4a20-aae5-94219094da17
md"""
Finally, we can plot the solution:
"""
# ╔═╡ cbd9f8cf-ad8c-40d9-a515-eb9172e5ba29
yfit = linfunc.(x; slope=c[2], intercept=c[1])
# ╔═╡ d9dcc518-9a27-4e92-8a30-5f2ad3401514
let
scatter(x, y, xlabel="x", ylabel="y", label="data")
plot!(x, yfit, label="best fit")
end
# ╔═╡ b212fc99-fe7a-4f6c-991c-405186177902
md"""
The packages [LsqFit](https://julianlsolvers.github.io/LsqFit.jl/latest/) and [GLM](https://juliastats.org/GLM.jl/v0.11/#Minimal-examples-1) (for generalized linear models) contain functions for performing and evaluating these types of linear fits.
## (Non-)linear curve fit
The packages above can be used to fit different polynomial models, but if we have a truly arbitrary Julia function we would like to fit to some data we can use the [Optimization.jl](http://optimization.sciml.ai/stable/) package. Through its various backends, Optimization.jl supports a very wide range of algorithms for local, global, convex, and non-convex optimization.
The first step is to define our objective function. We'll reuse our simple `linfunc` linear function from above:
"""
# ╔═╡ 5ed7e9a1-aa5f-4bc1-8904-36c09a2e90a3
# We must supply an objective function that will be minimized
# The u argument is a vector of parameters from the optimizer.
# data is a vector of static parameters passed through below.
function objective_linear(u, data)
# Get our fit parameters from u
slope, intercept = u
# equivalent to:
# slope = u[1]
# intercept = u[2]
# Get the x and y vectors from data
x, y = data
# Calculate the residuals between our model and the data
residuals = linfunc.(x; slope, intercept) .- y
# Return the sum of squares of the residuals to minimize
return sum(residuals.^2)
end
# Define the initial parameter values for slope and intercept
# ╔═╡ a9960993-249f-4cf3-ac94-1151fd15bbbb
u0_linear = [1.0, 1.0]
# Pass through the data we want to fit
# ╔═╡ 5c382a4f-c263-4991-8c38-69402b1a4077
data = [x,y]
# ╔═╡ 1878366e-3dda-4734-ae07-84f4d6c79a58
# Create an OptimizationProblem object to hold the function, initial
# values, and data.
prob = OptimizationProblem(objective_linear,u0_linear,data)
# Import the optimization backend we want to use
# ╔═╡ c43d8e58-62cb-4deb-a256-4453a19068e4
# Minimize the function. Optimization.jl uses the SciML common solver
# interface. Pass the problem you want to solve (optimization problem
# here) and a solver to use.
# NelderMead() is a derivative-free method for finding a function's
# local minimum.
sol_linear = solve(prob,NelderMead())
# ╔═╡ f464a85f-f2bc-4006-ab28-180a639dbf5e
# Exctract the best-fitting parameters
slope_opt, intercept_opt = sol_linear.u
# ╔═╡ 55fca124-23db-4577-bb65-76d627789358
md"""
Note: the `NelderMead()` algorithm behaves nearly identically to MATLAB's `fminsearch`.
We can now plot the solution:
"""
# ╔═╡ a71591a5-b2b8-4b5a-8b57-4900dcdea818
yfit_linear = linfunc.(
x;
slope=sol_linear.u[1],
intercept=sol_linear.u[2]
)
# ╔═╡ 0ac4b717-7c54-4c19-923c-9c49840295b3
begin
scatter(x, y, xlabel="x", ylabel="y", label="data")
plot!(x, yfit_linear, label="best fit")
end
# ╔═╡ 099fce63-9f9a-47c0-9454-6780c609692e
md"""
We can now test out a quadratic fit using the same package:
"""
# ╔═╡ ef40cf71-9b09-4f4d-8d43-9de003490717
function objective_quad(u, data)
x, y = data
# Define an equation of a quadratic, e.g.:
# 3x^2 + 2x + 1
model = u[1] .* x.^2 .+ u[2] .* x .+ u[3]
# Calculate the residuals between our model and the data
residuals = model .- y
# Return the sum of squares of the residuals to minimize
return sum(residuals.^2)
end
# ╔═╡ 528ce1ed-78a6-4381-a4bc-28a11004a839
u0_quad = [1.0, 1.0, 1.0]
# ╔═╡ d9fa281f-ef11-480e-bc4c-b8e00b8c826f
prob_quad = OptimizationProblem(objective_quad,u0_quad,data)
# ╔═╡ cc3984e5-586b-4d3a-bf3c-ef92568f455a
sol_quad = solve(prob_quad,NelderMead())
# ╔═╡ 07897a8d-457c-42c8-aa41-d6ef6754f69a
sol_quad.u
# ╔═╡ ad38861a-3e3a-4805-ac26-aa919f0291d7
yfit_quad = sol_quad.u[1] .* x.^2 .+ sol_quad.u[2] .* x .+ sol_quad.u[3]
# ╔═╡ b5dbf92b-040c-477e-8061-20a6ee0aedb4
let
scatter(x, y, xlabel="x", ylabel="y", label="data")
plot!(x, yfit_quad, label="quadratic fit")
end
# ╔═╡ 0613407d-98e7-4dba-8f96-04115f73b198
md"""
This is already very fast; however, as the scale of your problem grows, there are several routes you can take to improve the optimization performance.
First, you can use automatic differentiation and a higher order optimization algorithm:
"""
# ╔═╡ 3a9af7c6-31ff-41dc-92bb-bbda172eea71
optf = OptimizationFunction(objective_quad, Optimization.AutoForwardDiff())
# ╔═╡ a45bc312-6c1b-4872-a492-9d2a84b5a4e2
prob_quad_autodiff = OptimizationProblem(optf,u0_quad,data)
# ╔═╡ 5e838203-9bcd-4ff4-ae2f-13611042e0e2
@time sol = solve(prob_quad_autodiff,BFGS()) # another good algorithm is Newton()
# ╔═╡ eab5634f-de29-4702-9224-7d5170c5dad1
md"""
You can also write an "in-place" version of `objective` that doesn't allocate new arrays with each iteration.
## Bayesian models
Let's shift gears and now create a fully Bayesian model using the [Turing.jl](https://turing.ml/stable/) package.
Instead of defining an arbitrary Julia function, this package requires us to use a macro called `@model`.
Let's start with a linear model once more, now with the Turing `@model` syntax:
"""
# ╔═╡ b272d287-b6b4-4acd-9092-3f1fd8860c35
# Bayesian linear regression.
@model function linear_regression(x, y)
# Set variance prior.
σ₂ ~ truncated(Normal(0, 100), 0, Inf)
# Typed as \sigma <tab> \_2 <tab>
# Set intercept prior.
intercept ~ Normal(0, 5)
# Set the prior on our slope coefficient.
slope ~ Normal(0, 10)
# Each point is drawn from a gaussian (Normal) distribution
# with mean calculated form our linear model, and standard
# deviation as the square root of the variance variable
for i in eachindex(x,y)
y[i] ~ Normal(x[i] * slope + intercept, sqrt(σ₂))
end
end
# ╔═╡ f0264420-be19-4250-86c9-3e4c490f4a91
md"""
We can now draw posterior samples from this model using one of many available samplers, `NUTS`, the No U-Turn Sampler.
"""
# ╔═╡ 055298cd-1bbc-4d37-a2a9-595e8523b41b
model = linear_regression(x, y)
# ╔═╡ 0e30378a-1b6e-47b7-a70a-873ea61e9aa7
chain = sample(model, NUTS(0.65), 500)
# ╔═╡ 846c91dc-bdf8-48f5-aae8-e7e11f2394cf
md"""
We now plot all draws from the posterior
"""
# ╔═╡ b5fc7474-13b8-4f8f-a802-cf2cffb5b96c
let
intercept = chain["intercept"]
slope = chain["slope"]
σ₂ = chain["σ₂"]
y_fit = x .* slope' .+ intercept'
plot(x, y_fit;
label="",
color=:gray,
alpha=0.05
)
scatter!(x, y, xlabel="x", ylabel="y", label="data", color=1)
end
# ╔═╡ c65205db-35fb-48b4-9a29-4200bc9a9a78
md"""
Each gray curve is a sample from the posterior distribution of this model. To examine the model parameters and their covariance in greater detail, we can make a corner plot using the PairPlots.jl package.
Exercise: consider increasing the number of iterations to make a smooth plot.
"""
# ╔═╡ 2509c7ea-1eff-4d4e-800c-8cfc2a9fcedc
pairplot(chain)
# ╔═╡ 4f3b74d5-8a7a-4115-a7c2-1dd2a1e3b341
md"""
Let's now repeat this proceedure with a Bayesian quadratic model.
"""
# ╔═╡ 8a5ff894-4d56-42e3-9c1e-eeaa134b58e0
@model function quad_regression(x, y)
# Prior on the variance of the data around the best-fit line
σ₂ ~ truncated(Normal(0, 10), 0, Inf)
# Priors on the three quadratic parameters
u1 ~ Normal(0,0.01)
u2 ~ Normal(0,0.1)
u3 ~ Normal(0,5)
for i in eachindex(x,y)
model = u1 * x[i]^2 + u2*x[i] + u3
y[i] ~ Normal(model, sqrt(σ₂))
end
end
# ╔═╡ eec6af16-9a10-4289-a0a8-55d35936fea6
md"""
We can now draw posterior samples from this model using one of many available samplers, `NUTS`, or the No U-Turn Sampler.
"""
# ╔═╡ 4d611e81-e88d-42c4-acbc-c4016b2ce15b
model_quad = quad_regression(x, y)
# ╔═╡ df1b7e09-a88e-4486-b8d3-c1f0f8382c37
chain_quad = sample(model_quad, NUTS(0.65), 500)
# ╔═╡ 8f391130-062b-46c0-998e-bb1ed4ff4238
posterior = let
u1 = chain_quad["u1"]
u2 = chain_quad["u2"]
u3 = chain_quad["u3"]
u1' .* x.^2 .+ u2' .* x .+ u3'
end
# ╔═╡ 16181717-4e30-4c9c-a963-f6ea24e067d2
let
plot(x, posterior;
label="",
color=:gray,
alpha=0.1
)
scatter!(x, y, xlabel="x", ylabel="y", label="data", color=1)
end
# ╔═╡ 83c89249-c67b-4308-b5fa-c6aa195326b4
pairplot(chain_quad)
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e"
PairPlots = "43a3c2be-4208-490b-832a-a21dcd55d7da"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
[compat]
CairoMakie = "~0.12.18"
ForwardDiff = "~0.10.38"
Optimization = "~4.0.5"
OptimizationOptimJL = "~0.4.1"
PairPlots = "~2.10.0"
Plots = "~1.39.0"
Turing = "~0.35.3"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.11.1"
manifest_format = "2.0"
project_hash = "c41df57e5882e9e80a533acb9a2ca50ce13dd406"
[[deps.ADTypes]]
git-tree-sha1 = "72af59f5b8f09faee36b4ec48e014a79210f2f4f"
uuid = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
version = "1.11.0"
[deps.ADTypes.extensions]
ADTypesChainRulesCoreExt = "ChainRulesCore"
ADTypesConstructionBaseExt = "ConstructionBase"
ADTypesEnzymeCoreExt = "EnzymeCore"
[deps.ADTypes.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869"
[[deps.AbstractFFTs]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "d92ad398961a3ed262d8bf04a1a2b8340f915fef"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.5.0"
weakdeps = ["ChainRulesCore", "Test"]
[deps.AbstractFFTs.extensions]
AbstractFFTsChainRulesCoreExt = "ChainRulesCore"
AbstractFFTsTestExt = "Test"
[[deps.AbstractMCMC]]
deps = ["BangBang", "ConsoleProgressMonitor", "Distributed", "FillArrays", "LogDensityProblems", "Logging", "LoggingExtras", "ProgressLogging", "Random", "StatsBase", "TerminalLoggers", "Transducers"]
git-tree-sha1 = "aa469a7830413bd4c855963e3f648bd9d145c2c3"
uuid = "80f14c24-f653-4e6a-9b94-39d6b0f70001"
version = "5.6.0"
[[deps.AbstractPPL]]
deps = ["AbstractMCMC", "Accessors", "DensityInterface", "JSON", "Random"]
git-tree-sha1 = "bdb19638644450ee1b0fd63740381835069d34b9"
uuid = "7a57a42e-76ec-4ea3-a279-07e840d6d9cf"
version = "0.9.0"
[[deps.AbstractTrees]]
git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.4.5"
[[deps.Accessors]]
deps = ["CompositionsBase", "ConstructionBase", "InverseFunctions", "LinearAlgebra", "MacroTools", "Markdown"]
git-tree-sha1 = "96bed9b1b57cf750cca50c311a197e306816a1cc"
uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697"
version = "0.1.39"
[deps.Accessors.extensions]
AccessorsAxisKeysExt = "AxisKeys"
AccessorsDatesExt = "Dates"
AccessorsIntervalSetsExt = "IntervalSets"
AccessorsStaticArraysExt = "StaticArrays"
AccessorsStructArraysExt = "StructArrays"
AccessorsTestExt = "Test"
AccessorsUnitfulExt = "Unitful"
[deps.Accessors.weakdeps]
AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
[[deps.Adapt]]
deps = ["LinearAlgebra", "Requires"]
git-tree-sha1 = "50c3c56a52972d78e8be9fd135bfb91c9574c140"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "4.1.1"
weakdeps = ["StaticArrays"]
[deps.Adapt.extensions]
AdaptStaticArraysExt = "StaticArrays"
[[deps.AdaptivePredicates]]
git-tree-sha1 = "7e651ea8d262d2d74ce75fdf47c4d63c07dba7a6"
uuid = "35492f91-a3bd-45ad-95db-fcad7dcfedb7"
version = "1.2.0"
[[deps.AdvancedHMC]]
deps = ["AbstractMCMC", "ArgCheck", "DocStringExtensions", "InplaceOps", "LinearAlgebra", "LogDensityProblems", "LogDensityProblemsAD", "ProgressMeter", "Random", "Requires", "Setfield", "SimpleUnPack", "Statistics", "StatsBase", "StatsFuns"]
git-tree-sha1 = "6f6a228808fe00ad05b47d74747c800d3df18acb"
uuid = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
version = "0.6.4"
[deps.AdvancedHMC.extensions]
AdvancedHMCCUDAExt = "CUDA"
AdvancedHMCMCMCChainsExt = "MCMCChains"
AdvancedHMCOrdinaryDiffEqExt = "OrdinaryDiffEq"
[deps.AdvancedHMC.weakdeps]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
[[deps.AdvancedMH]]
deps = ["AbstractMCMC", "Distributions", "DocStringExtensions", "FillArrays", "LinearAlgebra", "LogDensityProblems", "Random", "Requires"]
git-tree-sha1 = "6e3d18037861bf220ed77f1a2c5f24a21a68d4b7"
uuid = "5b7e9947-ddc0-4b3f-9b55-0d8042f74170"
version = "0.8.5"
weakdeps = ["DiffResults", "ForwardDiff", "MCMCChains", "StructArrays"]
[deps.AdvancedMH.extensions]
AdvancedMHForwardDiffExt = ["DiffResults", "ForwardDiff"]
AdvancedMHMCMCChainsExt = "MCMCChains"
AdvancedMHStructArraysExt = "StructArrays"
[[deps.AdvancedPS]]
deps = ["AbstractMCMC", "Distributions", "Random", "Random123", "Requires", "SSMProblems", "StatsFuns"]
git-tree-sha1 = "5dcd3de7e7346f48739256e71a86d0f96690b8c8"
uuid = "576499cb-2369-40b2-a588-c64705576edc"
version = "0.6.0"
weakdeps = ["Libtask"]
[deps.AdvancedPS.extensions]
AdvancedPSLibtaskExt = "Libtask"
[[deps.AdvancedVI]]
deps = ["ADTypes", "Bijectors", "DiffResults", "Distributions", "DistributionsAD", "DocStringExtensions", "ForwardDiff", "LinearAlgebra", "ProgressMeter", "Random", "Requires", "StatsBase", "StatsFuns", "Tracker"]
git-tree-sha1 = "e45e57cea1879400952fe34b0cbc971950408af8"
uuid = "b5ca4192-6429-45e5-a2d9-87aec30a685c"
version = "0.2.11"
[deps.AdvancedVI.extensions]
AdvancedVIEnzymeExt = ["Enzyme"]
AdvancedVIFluxExt = ["Flux"]
AdvancedVIReverseDiffExt = ["ReverseDiff"]
AdvancedVIZygoteExt = ["Zygote"]
[deps.AdvancedVI.weakdeps]
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[[deps.AliasTables]]
deps = ["PtrArrays", "Random"]
git-tree-sha1 = "9876e1e164b144ca45e9e3198d0b689cadfed9ff"
uuid = "66dad0bd-aa9a-41b7-9441-69ab47430ed8"
version = "1.1.3"
[[deps.Animations]]
deps = ["Colors"]
git-tree-sha1 = "e092fa223bf66a3c41f9c022bd074d916dc303e7"
uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340"
version = "0.4.2"
[[deps.ArgCheck]]
git-tree-sha1 = "680b3b8759bd4c54052ada14e52355ab69e07876"
uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197"
version = "2.4.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.2"
[[deps.ArrayInterface]]
deps = ["Adapt", "LinearAlgebra"]
git-tree-sha1 = "017fcb757f8e921fb44ee063a7aafe5f89b86dd1"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "7.18.0"
[deps.ArrayInterface.extensions]
ArrayInterfaceBandedMatricesExt = "BandedMatrices"
ArrayInterfaceBlockBandedMatricesExt = "BlockBandedMatrices"
ArrayInterfaceCUDAExt = "CUDA"
ArrayInterfaceCUDSSExt = "CUDSS"
ArrayInterfaceChainRulesCoreExt = "ChainRulesCore"
ArrayInterfaceChainRulesExt = "ChainRules"
ArrayInterfaceGPUArraysCoreExt = "GPUArraysCore"
ArrayInterfaceReverseDiffExt = "ReverseDiff"
ArrayInterfaceSparseArraysExt = "SparseArrays"
ArrayInterfaceStaticArraysCoreExt = "StaticArraysCore"
ArrayInterfaceTrackerExt = "Tracker"
[deps.ArrayInterface.weakdeps]
BandedMatrices = "aae01518-5342-5314-be14-df237901396f"
BlockBandedMatrices = "ffab5731-97b5-5995-9138-79e8c1846df0"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
CUDSS = "45b445bb-4962-46a0-9369-b4df9d0f772e"
ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c"
Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
version = "1.11.0"
[[deps.Atomix]]
deps = ["UnsafeAtomics"]
git-tree-sha1 = "c3b238aa28c1bebd4b5ea4988bebf27e9a01b72b"
uuid = "a9b6321e-bd34-4604-b9c9-b65b8de01458"
version = "1.0.1"
[deps.Atomix.extensions]
AtomixCUDAExt = "CUDA"
AtomixMetalExt = "Metal"
AtomixoneAPIExt = "oneAPI"
[deps.Atomix.weakdeps]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
oneAPI = "8f75cd03-7ff8-4ecb-9b8f-daf728133b1b"
[[deps.Automa]]
deps = ["PrecompileTools", "SIMD", "TranscodingStreams"]
git-tree-sha1 = "a8f503e8e1a5f583fbef15a8440c8c7e32185df2"
uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b"
version = "1.1.0"
[[deps.AxisAlgorithms]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"]
git-tree-sha1 = "01b8ccb13d68535d73d2b0c23e39bd23155fb712"
uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950"
version = "1.1.0"
[[deps.AxisArrays]]
deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"]
git-tree-sha1 = "16351be62963a67ac4083f748fdb3cca58bfd52f"
uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9"
version = "0.4.7"
[[deps.BangBang]]
deps = ["Accessors", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires"]
git-tree-sha1 = "e2144b631226d9eeab2d746ca8880b7ccff504ae"
uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66"
version = "0.4.3"
[deps.BangBang.extensions]
BangBangChainRulesCoreExt = "ChainRulesCore"
BangBangDataFramesExt = "DataFrames"
BangBangStaticArraysExt = "StaticArrays"
BangBangStructArraysExt = "StructArrays"
BangBangTablesExt = "Tables"
BangBangTypedTablesExt = "TypedTables"
[deps.BangBang.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
TypedTables = "9d95f2ec-7b3d-5a63-8d20-e2491e220bb9"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
version = "1.11.0"
[[deps.Baselet]]
git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e"
uuid = "9718e550-a3fa-408a-8086-8db961cd8217"
version = "0.1.1"
[[deps.Bijectors]]
deps = ["ArgCheck", "ChainRulesCore", "ChangesOfVariables", "Distributions", "DocStringExtensions", "Functors", "InverseFunctions", "IrrationalConstants", "LinearAlgebra", "LogExpFunctions", "MappedArrays", "Random", "Reexport", "Roots", "SparseArrays", "Statistics"]
git-tree-sha1 = "326420188d2bf91e89906beaa8438cf7a729ee29"
uuid = "76274a88-744f-5084-9051-94815aaf08c4"
version = "0.15.2"
[deps.Bijectors.extensions]
BijectorsDistributionsADExt = "DistributionsAD"
BijectorsEnzymeCoreExt = "EnzymeCore"
BijectorsForwardDiffExt = "ForwardDiff"
BijectorsLazyArraysExt = "LazyArrays"
BijectorsMooncakeExt = "Mooncake"
BijectorsReverseDiffExt = "ReverseDiff"
BijectorsTrackerExt = "Tracker"
BijectorsZygoteExt = "Zygote"
[deps.Bijectors.weakdeps]
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
EnzymeCore = "f151be2c-9106-41f4-ab19-57ee4f262869"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02"
Mooncake = "da2b9cff-9c12-43a0-ae48-6db2b0edb7d6"
ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267"
Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[[deps.BitFlags]]
git-tree-sha1 = "0691e34b3bb8be9307330f88d1a3c3f25466c24d"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.9"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "8873e196c2eb87962a2048b3b8e08946535864a1"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+4"
[[deps.CEnum]]
git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.5.0"
[[deps.CRC32c]]
uuid = "8bf52ea8-c179-5cab-976a-9e18b702a9bc"
version = "1.11.0"
[[deps.CRlibm_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e329286945d0cfc04456972ea732551869af1cfc"
uuid = "4e9b3aee-d8a1-5a3d-ad8b-7d824db253f0"
version = "1.0.1+0"
[[deps.Cairo]]
deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"]
git-tree-sha1 = "71aa551c5c33f1a4415867fe06b7844faadb0ae9"
uuid = "159f3aea-2a34-519c-b102-8c37f9878175"
version = "1.1.1"
[[deps.CairoMakie]]
deps = ["CRC32c", "Cairo", "Cairo_jll", "Colors", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "PrecompileTools"]
git-tree-sha1 = "0afa2b4ac444b9412130d68493941e1af462e26a"
uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
version = "0.12.18"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "009060c9a6168704143100f36ab08f06c2af4642"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.18.2+1"
[[deps.ChainRules]]
deps = ["Adapt", "ChainRulesCore", "Compat", "Distributed", "GPUArraysCore", "IrrationalConstants", "LinearAlgebra", "Random", "RealDot", "SparseArrays", "SparseInverseSubset", "Statistics", "StructArrays", "SuiteSparse"]
git-tree-sha1 = "4312d7869590fab4a4f789e97bd82f0a04eaaa05"
uuid = "082447d4-558c-5d27-93f4-14fc19e9eca2"
version = "1.72.2"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra"]
git-tree-sha1 = "1713c74e00545bfe14605d2a2be1712de8fbcb58"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.25.1"
weakdeps = ["SparseArrays"]
[deps.ChainRulesCore.extensions]
ChainRulesCoreSparseArraysExt = "SparseArrays"
[[deps.ChangesOfVariables]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "799b25ca3a8a24936ae7b5c52ad194685fc3e6ef"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.9"
weakdeps = ["InverseFunctions", "Test"]
[deps.ChangesOfVariables.extensions]
ChangesOfVariablesInverseFunctionsExt = "InverseFunctions"
ChangesOfVariablesTestExt = "Test"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "bce6804e5e6044c6daab27bb533d1295e4a2e759"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.6"
[[deps.ColorBrewer]]
deps = ["Colors", "JSON", "Test"]
git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4"
uuid = "a2cac450-b92f-5266-8821-25eda20663c8"
version = "0.4.0"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "c785dfb1b3bfddd1da557e861b919819b82bbe5b"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.27.1"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "b10d0b65641d57b8b4d5e234446582de5047050d"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.5"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
weakdeps = ["SpecialFunctions"]
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "362a287c3aa50601b0bc359053d5c2468f0e7ce0"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.11"
[[deps.Combinatorics]]
git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860"
uuid = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
version = "1.0.2"
[[deps.CommonSolve]]
git-tree-sha1 = "0eee5eb66b1cf62cd6ad1b460238e60e4b09400c"
uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
version = "0.2.4"
[[deps.CommonSubexpressions]]
deps = ["MacroTools"]
git-tree-sha1 = "cda2cfaebb4be89c9084adaca7dd7333369715c5"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.1"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "8ae8d32e09f0dcf42a36b90d4e17f5dd2e4c4215"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.16.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.CompositionsBase]]
git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad"
uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b"
version = "0.1.2"
weakdeps = ["InverseFunctions"]
[deps.CompositionsBase.extensions]
CompositionsBaseInverseFunctionsExt = "InverseFunctions"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "f36e5e8fdffcb5646ea5da81495a5a7566005127"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.4.3"
[[deps.ConsoleProgressMonitor]]
deps = ["Logging", "ProgressMeter"]
git-tree-sha1 = "3ab7b2136722890b9af903859afcf457fa3059e8"
uuid = "88cd18e8-d9cc-4ea6-8889-5259c0d15c8b"
version = "0.1.2"
[[deps.ConstructionBase]]
git-tree-sha1 = "76219f1ed5771adbb096743bff43fb5fdd4c1157"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.5.8"
weakdeps = ["IntervalSets", "LinearAlgebra", "StaticArrays"]
[deps.ConstructionBase.extensions]
ConstructionBaseIntervalSetsExt = "IntervalSets"
ConstructionBaseLinearAlgebraExt = "LinearAlgebra"
ConstructionBaseStaticArraysExt = "StaticArrays"
[[deps.Contour]]
git-tree-sha1 = "439e35b0b36e2e5881738abc8857bd92ad6ff9a8"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.3"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1d0a14036acb104d9e89698bd408f63ab58cdc82"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.20"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
version = "1.11.0"
[[deps.Dbus_jll]]
deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl"]
git-tree-sha1 = "fc173b380865f70627d7dd1190dc2fce6cc105af"
uuid = "ee1fde0b-3d02-5ea6-8484-8dfef6360eab"
version = "1.14.10+0"
[[deps.DefineSingletons]]
git-tree-sha1 = "0fba8b706d0178b4dc7fd44a96a92382c9065c2c"
uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52"
version = "0.1.2"
[[deps.DelaunayTriangulation]]
deps = ["AdaptivePredicates", "EnumX", "ExactPredicates", "Random"]
git-tree-sha1 = "e1371a23fd9816080c828d0ce04373857fe73d33"
uuid = "927a84f5-c5f4-47a5-9785-b46e178433df"
version = "1.6.3"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"