-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDemo2.py
executable file
·37 lines (24 loc) · 1.08 KB
/
Demo2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
from UnifiedClassificationModel import MultipleClassifications
# Reading simulated brain connectomes
A = np.load('Data/Class1_50.npy')
B = np.load('Data/Class1_40.npy')
C = np.load('Data/Class1_30.npy')
D = np.load('Data/Class2_50.npy')
E = np.load('Data/Class2_40.npy')
F = np.load('Data/Class2_30.npy')
# Combining ASD and NC subjects to get modalities
Graphs_1 = np.concatenate([A, D], axis=0)
Graphs_2 = np.concatenate([B, E], axis=0)
Graphs_3 = np.concatenate([C, F], axis=0)
# Class label (i.e, health status): ASD: 1 / NC: 0
Labels_1 = np.array([1]*len(A) + [0]*len(D))
Labels_2 = np.array([1]*len(B) + [0]*len(E))
Labels_3 = np.array([1]*len(C) + [0]*len(F))
# Putting all modalities together in a list
All_Graphs = [Graphs_1, Graphs_2, Graphs_3]
All_Labels = [Labels_1, Labels_2, Labels_3]
nt_list = [10,15,20,25]
K_list = [20,30,40]
# Calculate all possible scores and plot them collectively
MultipleClassifications(All_Graphs, All_Labels, nt_list, K_list, P=3, d=20, eta=0.9, stdScale_GW=True, Fold=5, seed=100, Names_UC=None)