-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
41 lines (32 loc) · 1.21 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import pandas as pd
columns = list(map(lambda n: f'column{n}', range(100)))
print('generating data')
data = {}
sample_arr = [True, False]
num_rows = 500000
num_cols = 100
for i in range(25):
offset = i*4
data = {
**data,
f'columns{offset}': np.random.randn(num_rows), #float
f'columns{offset+1}': np.random.randint(-100000, 100000, size=num_rows), #int
f'columns{offset+2}': np.random.choice(sample_arr, size=num_rows), #bool
f'columns{offset+3}': pd.util.testing.rands_array(10, num_rows), #string
}
df = pd.DataFrame(data)
print('writing to files')
df.to_csv('data_all.csv', index=None)
## generate all float dataset
df = pd.DataFrame(np.random.randn(num_rows, num_cols))
df.to_csv('data_all_float.csv', index=None)
## generate all int dataset
df = pd.DataFrame(np.random.randint(-100000, 100000, size=(num_rows, num_cols)))
df.to_csv('data_all_int.csv', index=None)
## generate all bool dataset
df = pd.DataFrame(np.random.choice(sample_arr, size=(num_rows, num_cols)))
df.to_csv('data_all_bool.csv', index=None)
## generate all string dataset
df = pd.DataFrame(pd.util.testing.rands_array(10, (num_rows, num_cols)))
df.to_csv('data_all_string.csv', index=None)