-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
121 lines (97 loc) · 3.99 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import pickle as pickle
import os
import pandas as pd
import torch
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
# Dataset 구성.
class RE_Dataset(Dataset):
def __init__(self, tokenized_dataset, labels):
self.tokenized_dataset = tokenized_dataset
self.labels = labels
def __getitem__(self, idx):
item = {key: val[idx].clone().detach() for key, val in self.tokenized_dataset.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
# 처음 불러온 tsv 파일을 원하는 형태의 DataFrame으로 변경 시켜줍니다.
# 변경한 DataFrame 형태는 baseline code description 이미지를 참고해주세요.
def preprocessing_dataset(dataset, label_type):
label = []
for i in dataset[8]:
if i == 'blind':
label.append(100)
else:
label.append(label_type[i])
out_dataset = pd.DataFrame(
{'sentence': dataset[1], 'entity_01': dataset[2], 'entity_02': dataset[5], 'label': label,})
return out_dataset
# tsv 파일을 불러옵니다.
def load_data(dataset_dir):
# load label_type, classes
with open('../input/data/label_type.pkl', 'rb') as f:
label_type = pickle.load(f)
# load dataset
dataset = pd.read_csv(dataset_dir, delimiter='\t', header=None)
# preprecessing dataset
dataset = preprocessing_dataset(dataset, label_type)
return dataset
# ner tag가 붙은 tsv 파일을 불러옵니다.
def ner_load_data(dataset_dir):
dataset = pd.read_csv(dataset_dir, delimiter='\t', header=None)
dataset = pd.DataFrame(
{'sentence':dataset[0], 'entity_01': dataset[1], 'entity_02': dataset[2], 'label': dataset[3]})
return dataset
# bert input을 위한 tokenizing.
def tokenized_dataset(dataset, entity_between, tokenizer):
concat_entity = []
for e01, e02 in zip(dataset['entity_01'], dataset['entity_02']):
temp = ''
temp = e01 + entity_between + e02
concat_entity.append(temp)
tokenized_sentences = tokenizer(
concat_entity,
list(dataset['sentence']),
return_tensors="pt",
padding=True,
truncation=True,
max_length=150,
add_special_tokens=True
)
return tokenized_sentences
def get_trainLoader(args, train_data, valid_data, train_label, valid_label, tokenizer):
# tokenizing dataset
if args.isAug:
train_num = len(train_data)
train_pieces = dict(list(train_data.groupby('label')))
aug_dataset = load_data("../input/data/aug/aug1.tsv")
pieces = dict(list(aug_dataset.groupby('label')))
for i in pieces.keys():
df_shuffled = pieces[i].sample(frac=len(train_pieces[i])/train_num).reset_index(drop=True)
train_data = pd.concat([train_data, df_shuffled])
# remove under 8 samples
'''
del_labels = []
train_pieces = dict(list(train_data.groupby('label')))
for i in train_pieces.keys():
if len(train_pieces[i]) < 8:
del_labels.append(i)
train_data[~train_data['label'].isin(del_labels)]
'''
entity_between = '</s></s>' if args.model == 'r_roberta' or args.model == 'roberta' else '[SEP]'
tokenized_train = tokenized_dataset(train_data, entity_between, tokenizer)
tokenized_valid = tokenized_dataset(valid_data, entity_between, tokenizer)
# make dataset for pytorch.
RE_train_dataset = RE_Dataset(tokenized_train, train_label)
RE_valid_dataset = RE_Dataset(tokenized_valid, valid_label)
trainloader = DataLoader(RE_train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=4
)
validloader = DataLoader(RE_valid_dataset,
shuffle=False,
num_workers=4
)
return trainloader, validloader