-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
191 lines (149 loc) · 6.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import random
import argparse
import numpy as np
import sys
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score
from loss import *
from model import *
from dataloader import *
from transformers import AutoTokenizer, BertModel, ElectraModel, RobertaModel
sys.path.append('/opt/ml/klue-baseline')
from evaluation import test_main
def str2bool(v):
if v.lower() in ('yes', 'true', 'y', 't', '1'):
return True
elif v.lower() in ('no', 'false', 'n', 'f', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def seed_everything(seed):
"""
동일한 조건으로 학습을 할 때, 동일한 결과를 얻기 위해 seed를 고정시킵니다.
Args:
seed: seed 정수값
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def train(args, criterion, wandb):
tokenizer = get_tokenizer(args)
if 'ner' in args.train_file:
all_dataset = ner_load_data(f"{args.train_dir}/{args.train_file}.tsv")
else:
all_dataset = load_data(f"{args.train_dir}/{args.train_file}.tsv")
all_label = all_dataset['label'].values
kf = StratifiedKFold(n_splits=8, random_state=42, shuffle=True)
fold_idx = 1
for train_index, test_index in kf.split(all_dataset, all_label):
os.makedirs(f'./models/{args.model_name}/{fold_idx}-fold', exist_ok=True)
### Model Select
model = get_model(args)
model.cuda()
### Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
train_data, valid_data = all_dataset.iloc[train_index], all_dataset.iloc[test_index]
train_label, valid_label = all_label[train_index], all_label[test_index]
trainloader, validloader = get_trainLoader(args, train_data, valid_data, train_label, valid_label, tokenizer)
total_batch_ = len(trainloader)
valid_batch_ = len(validloader)
best_val_loss, best_val_acc = np.inf, 0
print(f"---------------------------------- {fold_idx} ----------------------------------")
for i in range(args.epochs + 1):
model.train()
epoch_perform, batch_perform = np.zeros(2), np.zeros(2)
for j, v in enumerate(trainloader):
input_ids, attention_mask, labels = v['input_ids'].cuda(), v['attention_mask'].cuda(), v['labels'].cuda()
if args.model == 'roberta' or args.model == 'r_roberta':
token_type_ids = None
else:
token_type_ids = v['token_type_ids'].cuda()
optimizer.zero_grad()
output = model(input_ids, attention_mask, token_type_ids) ## label을 안 넣어서 logits값만 출력
loss = criterion(output, labels)
loss.backward()
optimizer.step()
predict = output.argmax(dim=-1)
predict = predict.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
acc = accuracy_score(labels, predict)
batch_perform += np.array([loss.item(), acc])
epoch_perform += np.array([loss.item(), acc])
if (j + 1) % 50 == 0:
print(
f"Epoch {i:#04d} #{j + 1:#03d} -- loss: {batch_perform[0] / 50:#.5f}, acc: {batch_perform[1] / 50:#.4f}"
)
batch_perform = np.zeros(2)
print(
f"Epoch {i:#04d} loss: {epoch_perform[0] / total_batch_:#.5f}, acc: {epoch_perform[1] / total_batch_:#.2f}"
)
wandb.log({
"epoch": i,
"Train epoch Loss": epoch_perform[0] / total_batch_,
"Train epoch Acc": epoch_perform[1] / total_batch_}
)
###### Validation
model.eval()
valid_perform = np.zeros(2)
with torch.no_grad():
for v in validloader:
input_ids, attention_mask, valid_labels = v['input_ids'].cuda(), v['attention_mask'].cuda(), v['labels'].cuda()
if args.model == 'roberta' or args.model == 'r_roberta':
token_type_ids = None
else:
token_type_ids = v['token_type_ids'].cuda()
valid_output = model(input_ids, attention_mask, token_type_ids)
valid_loss = criterion(valid_output, valid_labels)
valid_predict = valid_output.argmax(dim=-1)
valid_predict = valid_predict.detach().cpu().numpy()
valid_labels = valid_labels.detach().cpu().numpy()
valid_acc = accuracy_score(valid_labels, valid_predict)
valid_perform += np.array([valid_loss.item(), valid_acc])
###### Model save
val_total_loss = valid_perform[0] / valid_batch_
val_total_acc = valid_perform[1] / valid_batch_
best_val_loss = min(best_val_loss, val_total_loss)
if val_total_acc > best_val_acc and val_total_acc >= 0.74:
print(f"New best model for val accuracy : {val_total_acc:#.4f}! saving the best model..")
torch.save(model.state_dict(), f"./models/{args.model_name}/{fold_idx}-fold/best.pt")
best_val_acc = val_total_acc
print(
f">>>> Validation loss: {val_total_loss:#.5f}, Acc: {val_total_acc:#.4f}"
)
print()
wandb.log({
"epoch": i,
"Valid Loss": val_total_loss,
"Valid Acc": val_total_acc}
)
fold_idx +=1
if __name__ == '__main__':
import wandb
parser = argparse.ArgumentParser()
parser.add_argument('--project_name', type=str, default='klue-baseline', help='wandb project name')
parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)')
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (default: 10)')
parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)')
parser.add_argument('--model', type=str, default='r_roberta', help='model type (kobert, koelectra, multi, roberta, r_roberta; default)')
parser.add_argument('--lr', type=float, default=5e-5, help='learning rate (default: 5e-5)')
parser.add_argument('--smoothing', type=float, default=0.5, help='smoothing level (default: 0.5)')
parser.add_argument('--dp', type=float, default=0.0, help='Dropout rate of Classifier (default: None)')
parser.add_argument('--train_dir', type=str, default='../input/data/train')
parser.add_argument('--isAug', type=str2bool, default=False, help='choose Augmentation(true) or Not(false; default)')
parser.add_argument('--train_dir', type=str, default='../input/data/train')
parser.add_argument('--train_file', type=str, default='train', help='choose train; default, gold_train, pororo_train, gold_pororo_train, ner_train')
parser.add_argument('--model_name', type=str, required=True)
args = parser.parse_args()
print(args)
seed_everything(args.seed)
wandb.init(project=args.project_name)
wandb.run.name = f'{args.model_name}'
wandb.config.update(args)
criterion = LabelSmoothingLoss(smoothing=args.smoothing)
train(args, criterion, wandb)