-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
256 lines (204 loc) · 10 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
Open-Domain Question Answering 을 수행하는 inference 코드 입니다.
대부분의 로직은 train.py 와 비슷하나 retrieval, predict
"""
import logging
import os
import sys
from datasets import load_metric, load_from_disk, Sequence, Value, Features, Dataset, DatasetDict
from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from utils_qa import postprocess_qa_predictions, check_no_error, tokenize
from trainer_qa import QuestionAnsweringTrainer
from retrieval import SparseRetrieval
from arguments import (
ModelArguments,
DataTrainingArguments,
)
logger = logging.getLogger(__name__)
def main():
# 가능한 arguments 들은 ./arguments.py 나 transformer package 안의 src/transformers/training_args.py 에서 확인 가능합니다.
# --help flag 를 실행시켜서 확인할 수 도 있습니다.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.do_train = True
print(f"model is from {model_args.model_name_or_path}")
print(f"data is from {data_args.dataset_name}")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
datasets = load_from_disk(data_args.dataset_name)
print(datasets)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
use_fast=True,
)
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
# run passage retrieval if true
if data_args.eval_retrieval:
datasets = run_sparse_retrieval(datasets, training_args)
# eval or predict mrc model
if training_args.do_eval or training_args.do_predict:
run_mrc(data_args, training_args, model_args, datasets, tokenizer, model)
def run_sparse_retrieval(datasets, training_args):
#### retreival process ####
retriever = SparseRetrieval(tokenize_fn=tokenize,
data_path="./data",
context_path="wikipedia_documents.json")
retriever.get_sparse_embedding()
df = retriever.retrieve(datasets['validation'])
# faiss retrieval
# df = retriever.retrieve_faiss(dataset['validation'])
if training_args.do_predict: # test data 에 대해선 정답이 없으므로 id question context 로만 데이터셋이 구성됩니다.
f = Features({'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)})
elif training_args.do_eval: # train data 에 대해선 정답이 존재하므로 id question context answer 로 데이터셋이 구성됩니다.
f = Features({'answers': Sequence(feature={'text': Value(dtype='string', id=None),
'answer_start': Value(dtype='int32', id=None)},
length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)})
datasets = DatasetDict({'validation': Dataset.from_pandas(df, features=f)})
return datasets
def run_mrc(data_args, training_args, model_args, datasets, tokenizer, model):
# only for eval or predict
column_names = datasets["validation"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
pad_on_right = tokenizer.padding_side == "right"
# check if there is an error
last_checkpoint, max_seq_length = check_no_error(training_args, data_args, tokenizer, datasets)
# Validation preprocessing
def prepare_validation_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
eval_dataset = datasets["validation"]
# Validation Feature Creation
eval_dataset = eval_dataset.map(
prepare_validation_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
# We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data collator.
data_collator = (
DataCollatorWithPadding(
tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None
)
)
# Post-processing:
def post_processing_function(examples, features, predictions, training_args):
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
max_answer_length=data_args.max_answer_length,
output_dir=training_args.output_dir,
)
# Format the result to the format the metric expects.
formatted_predictions = [
{"id": k, "prediction_text": v} for k, v in predictions.items()
]
if training_args.do_predict:
return formatted_predictions
elif training_args.do_eval:
references = [
{"id": ex["id"], "answers": ex[answer_column_name]}
for ex in datasets["validation"]
]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
metric = load_metric("squad")
def compute_metrics(p: EvalPrediction):
return metric.compute(predictions=p.predictions, references=p.label_ids)
print("init trainer...")
# Initialize our Trainer
trainer = QuestionAnsweringTrainer(
model=model,
args=training_args,
train_dataset= None,
eval_dataset=eval_dataset,
eval_examples=datasets['validation'],
tokenizer=tokenizer,
data_collator=data_collator,
post_process_function=post_processing_function,
compute_metrics=compute_metrics,
)
logger.info("*** Evaluate ***")
#### eval dataset & eval example - will create predictions.json
if training_args.do_predict:
predictions = trainer.predict(test_dataset=eval_dataset,
test_examples=datasets['validation'])
# predictions.json is already saved when we call postprocess_qa_predictions(). so there is no need to further use predictions.
print("No metric can be presented because there is no correct answer given. Job done!")
if training_args.do_eval:
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
if __name__ == "__main__":
main()