-
Notifications
You must be signed in to change notification settings - Fork 1
/
load_data.py
302 lines (227 loc) · 9.87 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
import math
import os
from datetime import datetime
import time
import pandas as pd
import random
from sklearn.preprocessing import LabelEncoder
import numpy as np
from elo import *
import pickle
class Preprocess:
def __init__(self,args):
self.args = args
self.train_data = None
self.test_data = None
def get_train_data(self):
return self.train_data
def get_test_data(self):
return self.test_data
def split_data(self, data, ratio=0.7, shuffle=True, seed=0):
"""
split data into two parts with a given ratio.
"""
if shuffle:
random.seed(seed) # fix to default seed 0
random.shuffle(data)
size = int(len(data) * ratio)
data_1 = data[:size]
data_2 = data[size:]
return data_1, data_2
def __save_labels(self, encoder, name):
le_path = os.path.join(self.args.asset_dir, name + '_classes.npy')
np.save(le_path, encoder.classes_)
def __preprocessing(self, df, is_train = True):
cate_cols = ['assessmentItemID', 'KnowledgeTag']
if not os.path.exists(self.args.asset_dir):
os.makedirs(self.args.asset_dir)
for col in cate_cols:
le = LabelEncoder()
if is_train:
#For UNKNOWN class
a = df[col].unique().tolist() + ['unknown']
le.fit(a)
self.__save_labels(le, col)
else:
label_path = os.path.join(self.args.asset_dir,col+'_classes.npy')
le.classes_ = np.load(label_path)
df[col] = df[col].apply(lambda x: x if x in le.classes_ else 'unknown')
#모든 컬럼이 범주형이라고 가정
df[col]= df[col].astype(str)
test = le.transform(df[col])
df[col] = test
def convert_time(s):
timestamp = time.mktime(datetime.strptime(s, '%Y-%m-%d %H:%M:%S').timetuple())
return int(timestamp)
df['Timestamp'] = df['Timestamp'].apply(convert_time)
return df
def __feature_engineering(self, df):
return df
def load_data_from_file(self, file_name, is_train=True):
csv_file_path = os.path.join(self.args.data_dir, file_name)
df = pd.read_csv(
filepath_or_buffer=csv_file_path,
usecols=['userID','Timestamp', 'assessmentItemID', 'answerCode', 'KnowledgeTag'])
df = self.__feature_engineering(df)
df = self.__preprocessing(df, is_train)
# 추후 feature를 embedding할 시에 embedding_layer의 input 크기를 결정할때 사용
self.args.n_questions = len(np.load(os.path.join(self.args.asset_dir,'assessmentItemID_classes.npy')))
self.args.n_tag = len(np.load(os.path.join(self.args.asset_dir,'KnowledgeTag_classes.npy')))
df = df.sort_values(by=['userID','Timestamp'], axis=0)
columns = ['userID', 'assessmentItemID', 'answerCode', 'KnowledgeTag']
group = df[columns].groupby('userID').apply(
lambda r: (
r['assessmentItemID'].values,
r['KnowledgeTag'].values,
r['answerCode'].values
)
)
return group.values
def load_train_data(self, file_name):
self.train_data = self.load_data_from_file(file_name)
def load_test_data(self, file_name):
self.test_data = self.load_data_from_file(file_name, is_train= False)
class Preprocess_elo:
def __init__(self,args):
self.args = args
self.train_data = None
self.test_data = None
def get_train_data(self):
return self.train_data
def get_test_data(self):
return self.test_data
def split_data(self, data, ratio=0.7, shuffle=True, seed=0):
"""
split data into two parts with a given ratio.
"""
if shuffle:
random.seed(seed) # fix to default seed 0
random.shuffle(data)
size = int(len(data) * ratio)
data_1 = data[:size]
data_2 = data[size:]
return data_1, data_2
def __save_labels(self, encoder, name):
le_path = os.path.join(self.args.asset_dir, name + '_classes.npy')
np.save(le_path, encoder.classes_)
def __preprocessing(self, df, is_train = True):
cate_cols = ['assessmentItemID', 'diffTag']
if not os.path.exists(self.args.asset_dir):
os.makedirs(self.args.asset_dir)
for col in cate_cols:
le = LabelEncoder()
if is_train:
#For UNKNOWN class
a = df[col].unique().tolist() + ['unknown']
le.fit(a)
self.__save_labels(le, col)
else:
label_path = os.path.join(self.args.asset_dir,col+'_classes.npy')
le.classes_ = np.load(label_path)
df[col] = df[col].apply(lambda x: x if x in le.classes_ else 'unknown')
df[col]= df[col].astype(str)
test = le.transform(df[col])
df[col] = test
def convert_time(s):
timestamp = time.mktime(datetime.strptime(s, '%Y-%m-%d %H:%M:%S').timetuple())
return int(timestamp)
df['Timestamp'] = df['Timestamp'].apply(convert_time)
return df
def __feature_engineering(self, df, is_train): # elo rating
if not os.path.exists(self.args.asset_dir):
os.makedirs(self.args.asset_dir)
if is_train:
elo_df=df.copy()
elo_df.rename(columns={'userID': 'student_id'}, inplace=True)
student_parameters, item_parameters = train_elo(elo_df)
diff=pd.DataFrame(item_parameters).T
diff_index = pd.qcut(diff['beta'], 100, labels=False).to_dict()
df['diffTag'] = df.assessmentItemID.map(lambda x: diff_index.get(x,x))
# save data
label_path = os.path.join(self.args.asset_dir, 'diffTag.pickle')
with open(label_path,'wb') as fw:
pickle.dump(diff_index, fw)
else:
label_path = os.path.join(self.args.asset_dir, 'diffTag.pickle')
with open(label_path, 'rb') as fr:
diff_index = pickle.load(fr)
df['diffTag'] = df.assessmentItemID.map(lambda x: diff_index.get(x,x))
return df
def load_data_from_file(self, file_name, is_train=True):
csv_file_path = os.path.join(self.args.data_dir, file_name)
df = pd.read_csv(
filepath_or_buffer=csv_file_path,
usecols=['userID','Timestamp', 'assessmentItemID', 'answerCode'])
df = self.__feature_engineering(df, is_train)
df = self.__preprocessing(df, is_train)
# 추후 feature를 embedding할 시에 embedding_layer의 input 크기를 결정할때 사용
self.args.n_questions = len(np.load(os.path.join(self.args.asset_dir,'assessmentItemID_classes.npy')))
self.args.n_tag = len(np.load(os.path.join(self.args.asset_dir,'diffTag_classes.npy')))
df = df.sort_values(by=['userID','Timestamp'], axis=0)
columns = ['userID', 'assessmentItemID', 'answerCode', 'diffTag']
group = df[columns].groupby('userID').apply(
lambda r: (
r['assessmentItemID'].values,
r['diffTag'].values,
r['answerCode'].values
)
)
return group.values
def load_train_data(self, file_name):
self.train_data = self.load_data_from_file(file_name)
def load_test_data(self, file_name):
self.test_data = self.load_data_from_file(file_name, is_train= False)
class DATA(object):
def __init__(self, n_question, seqlen):
self.seqlen = seqlen
self.n_question = n_question
def load_data(self, f_data):
q_data = []
qa_data = []
p_data = []
for idx, line in enumerate(f_data):
Q = line[0]
P = line[1]
A = line[2]
# start split the data
n_split = 1
# print('len(Q):',len(Q))
if len(Q) > self.seqlen:
n_split = math.floor(len(Q) / self.seqlen)
if len(Q) % self.seqlen:
n_split = n_split + 1
# print('n_split:',n_split)
for k in range(n_split):
question_sequence = []
problem_sequence = []
answer_sequence = []
if k == n_split - 1:
endINdex = len(A)
else:
endINdex = (k+1) * self.seqlen
for i in range(k * self.seqlen, endINdex):
if Q[i]>0:
Xindex = int(Q[i]) + int(A[i]) * self.n_question
question_sequence.append(int(Q[i]))
problem_sequence.append(int(P[i]))
answer_sequence.append(Xindex)
else:
# print(Q[i])
pass
q_data.append(question_sequence)
qa_data.append(answer_sequence)
p_data.append(problem_sequence)
q_dataArray = np.zeros((len(q_data), self.seqlen))
for j in range(len(q_data)):
dat = q_data[j]
q_dataArray[j, :len(dat)] = dat
qa_dataArray = np.zeros((len(qa_data), self.seqlen))
for j in range(len(qa_data)):
dat = qa_data[j]
qa_dataArray[j, :len(dat)] = dat
p_dataArray = np.zeros((len(p_data), self.seqlen))
for j in range(len(p_data)):
dat = p_data[j]
p_dataArray[j, :len(dat)] = dat
return q_dataArray, qa_dataArray, p_dataArray