-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdone_train_hl.py
137 lines (114 loc) · 3.68 KB
/
done_train_hl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
from keras.callbacks import ModelCheckpoint, LambdaCallback
import numpy as np
import os
import sys
import csv
from numpy.core.defchararray import encode
from numpy.lib.function_base import vectorize
# Own library
from models.model import lstm_hl
from datetime import datetime
# Suppress TensorFlow messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
####################################################
# PARAMETERS
####################################################
INPUT_LEN = 1440
OUTPUT_LEN = 10
SHIFT = 10
EPOCHS = 25
BATCH_SIZE = 128
FILEPATH = "weights_hl.hdf5"
####################################################
# Load data
def data_load ():
data = {}
# Read CSV file into array
data = []
with open ("file_new.csv", newline = "") as csvfile:
reader = csv.reader (csvfile, delimiter = ',')
for row in reader:
data.append (row)
data_rows_count = len(data)
print (">>> data rows count:", data_rows_count)
doge_max = 0
doge_min = 999999999
for row in data:
if float(row[2]) > doge_max:
doge_max = float(row[2])
if float(row[3]) < doge_min:
doge_min = float(row[3])
print (">>> DOGE min", doge_min)
print (">>> DOGE max", doge_max)
with open('min_max_doge.csv', 'w') as f:
write = csv.writer(f, delimiter=',')
csv_out = [doge_min, doge_max]
write.writerow(csv_out)
print("Save min max")
# Get data from columns
data_time_doge = get_column(data, 0)
data_high_doge = get_column(data, 2)
data_low_doge = get_column(data, 3)
data_close_doge = get_column(data, 4)
input_high_doge_arr = []
input_low_doge_arr = []
output_close_doge_arr = []
loop = 0
yes = True
while yes:
input_high_doge = data_high_doge[0 + SHIFT * loop : INPUT_LEN + SHIFT * loop]
input_low_doge = data_low_doge[0 + SHIFT * loop : INPUT_LEN + SHIFT * loop]
output_close_doge = data_close_doge[INPUT_LEN + SHIFT * loop : INPUT_LEN + OUTPUT_LEN + SHIFT * loop]
if len(input_high_doge) < INPUT_LEN or len(output_close_doge) < OUTPUT_LEN:
yes = False
else:
input_high_doge_arr.append(input_high_doge)
input_low_doge_arr.append(input_low_doge)
output_close_doge_arr.append(output_close_doge)
loop += SHIFT
input_high_doge_arr = np.array(input_high_doge_arr)
input_low_doge_arr = np.array(input_low_doge_arr)
print(">>> count list", len(input_high_doge_arr))
encode2 = np.vectorize(encode)
input_high_doge_arr = encode2(input_high_doge_arr, doge_max)
input_low_doge_arr = encode2(input_low_doge_arr, doge_max)
X = np.array([input_high_doge_arr[0], input_low_doge_arr[0]])
for index in range(1, len(input_high_doge_arr)):
print(index)
X = np.append(X, [input_high_doge_arr[index], input_low_doge_arr[index]], axis = 0)
X = np.reshape(X, (len(input_high_doge_arr),2 ,INPUT_LEN))
print(X)
y = np.array(output_close_doge_arr, dtype = float)
y = encode2(y, doge_max)
print(y)
return X, y
def get_column(matrix, i):
return [row[i] for row in matrix]
# Invert encoding
def decode (value, max):
return value * max
# Encode data
def encode (value, max):
result = float(value) / max
return result
# Run every epoch
def on_epoch_end (epoch, logs):
print (">>>LOGS>>>", logs)
# Load trained weights
def model_load (model):
if os.path.exists (FILEPATH):
model.load_weights (FILEPATH)
# Train model
def model_train (model, X, y):
checkpoint = ModelCheckpoint (FILEPATH, monitor = 'loss',
verbose = 1, save_best_only = True,
mode = 'min')
print_callback = LambdaCallback (on_epoch_end = on_epoch_end)
callbacks = [print_callback, checkpoint]
model.fit (X, y, batch_size = BATCH_SIZE, epochs = EPOCHS, callbacks = callbacks)
model = lstm_hl (INPUT_LEN, OUTPUT_LEN)
model_load (model)
print (model.summary())
X, y = data_load ()
model_train (model, X, y)